MATLAB® 7

Programming Fundamentals

MATLAB

‘\The MathWorks™

Accelorating the poce of engineering and science

LN N

How to Contact The MathWorks

www . mathworks.com Web

comp.soft-sys.matlab Newsgroup

www . mathworks.com/contact_TS.html Technical Support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports

doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)
508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.
MATLAB Programming Fundamentals
© COPYRIGHT 1984-2010 by The MathWorks™, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program

or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used

or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www . mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History

June 2004
October 2004
March 2005
June 2005
September 2005
March 2006
September 2006
March 2007
September 2007
March 2008
October 2008
March 2009
September 2009
March 2010

First printing
Online only
Online only
Second printing
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only

New for MATLAB 7.0 (Release 14)

Revised for MATLAB 7.0.1 (Release 14SP1)
Revised for MATLAB 7.0.4 (Release 14SP2)
Minor revision for MATLAB 7.0.4

Revised for MATLAB 7.1 (Release 14SP3)
Revised for MATLAB 7.2 (Release 2006a)
Revised for MATLAB 7.3 (Release 2006b)
Revised for MATLAB 7.4 (Release 2007a)
Revised for Version 7.5 (Release 2007b)
Revised for Version 7.6 (Release 2008a)
Revised for Version 7.7 (Release 2008b)
Revised for Version 7.8 (Release 2009a)
Revised for Version 7.9 (Release 2009b)
Revised for Version 7.10 (Release 2010a)

Classes (Data Types)

1

Overview of MATLAB Classes 1-2
Fundamental MATLAB Classesccvvuvvnn... 1-2
How to Use the Different Classes 1-4

NumericClassest 1-6
OVeIVIBW o ittt ettt ettt e e e 1-6
Integers ... 1-6
Floating-Point Numbers 1-10
Complex Numbers, 1-20
Infinityand NaN 1-21
Identifying Numeric Classescvuuuennn. 1-23
Display Format for Numeric Values 1-23
Function Summary 1-25

The Logical Classt iiiiiiinnn... 1-29
Overview of the Logical Class 1-29
Identifying Logical Arraysccuiiiiiina.. 1-30
Functions that Return a Logical Result 1-31
Using Logical Arrays in Conditional Statements 1-33
Using Logical Arrays in Indexing 1-34

Characters and Strings 1-35
Creating Character Arrayscovueiniueennn.. 1-35
Cell Arrays of Stringscouiiiniennneennn.. 1-40
Formatting Strings0 iiiiiiiiiiinnn... 1-42
String CompariSOnsvvvitt ittt 1-56
Searching and Replacing 1-59
Converting from Numeric to String 1-60
Converting from String to Numeric 1-62
Function Summary 1-64

Structurest e e 1-67
What Is a Structure? 1-67
Creating a Structurec.coiiiiieinnnnennn.. 1-69

vi

Contents

Structure Fields i, 1-76

Concatenating Structurescoiiiuuneeeenn.. 1-79
Indexing into a Struct Array, 1-80
Returning Data from a Struct Array 1-82
Using Structures with Functions 1-86
Converting Between Struct Array and Cell Array 1-89
Organizing Data in Structure Arrays 1-91
Operator SUMIMATYottt ittt ettt 1-97
Function Summary i .. 1-98
Cell Arrays ...t e 1-101
What Is a Cell Array? 1-101
Cell Array Operationsc.uiiiinnnneeeennnn 1-103
Creatinga Cell Arrayiiiiiiinnnnnnnnnn. 1-103
Concatenating Cell Arrayscciiiiiiuneeeen.. 1-108
Indexing intoa Cell Arraycciiiiinnnnnn. 1-109
Assigning Valuestoa Cell Array 1-113
Returning Data from a Cell Array 1-114
Using Cell Arrays with Functions 1-118
Converting Between Cell Array and Struct Array 1-121
Operator SUMIMATYttt t it eeeeee e 1-122
Function Summary 1-124
FunctionHandles 1-127
L0 =) T 1= 1-127
Creating a Function Handle 1-127
Calling a Function By Means of Its Handle 1-131
Preserving Data from the Workspace 1-133
Applications of Function Handles 1-136
Saving and Loading Function Handles 1-142
Advanced Operations on Function Handles 1-142
Functions That Operate on Function Handles 1-148
Map Containersccuiiiiiiiinnnnnnnnnn. 1-150
Overview of the Map Data Structure 1-150
Description of the Map Class 1-151
Creatinga Map Objectcciiiiiiinnnennn.. 1-153
Examining the Contents of the Map 1-156
Reading and Writing Using a Key Index 1-157
Modifying Keys and ValuesintheMap 1-160
Mapping to Different Value Types 1-163

Combining Unlike Classes 1-165

Combining Unlike Integer Typesccoo... .. 1-166
Combining Integer and Noninteger Data 1-168
Empty Matricesoiiiiiiiiiiii .. 1-168
Concatenation Examples 1-168
Defining Your Own Classes 1-171

Basic Program Components

2

MATLAB Commandscoiuiiiiinnennn.. 2-2
Basic Command Syntaxcc0 .. 2-2
Entering More Than One Command on a Line 2-3
Assigning to Multiple Outputs 2-3
Commands that Call MATLAB Functions 2-5

Expressions 2-6
String Evaluation 2-6
Shell Escape Functions 2-7

Variables e 2-8
Typesof Variablesc.c0 .. 2-8
Naming Variables, 2-12
Guidelines to Using Variables 2-16
Scopeof aVariable, 2-16
Lifetime of a Variable 2-18

Keywords i 2-19

Special Values 2-20

Operators it 2-22
Arithmetic Operatorsc.iiiinnnneeeennn. 2-22
Relational Operatorsco .. 2-23
Logical Operatorscoiuuiiieeeennnnnn. 2-24
Operator Precedence, 2-31

vii

viii

Contents

Comma-Separated Lists 2-33

What Is a Comma-Separated List? 2-33
Generating a Comma-Separated List 2-33
Assigning Output from a Comma-Separated List 2-35
Assigning to a Comma-Separated List 2-36
How to Use the Comma-Separated Lists 2-37
Fast Fourier Transform Example 2-39
Program Control Statements 2-41
Conditional Control —if, switch 2-41
Loop Control — for, while, continue, break 2-45
Error Control — try,catch 2-48
Program Termination —return 2-49
Datesand Times i, 2-50
L0 =) T 1= 2-50
Types of Date Formats 2-50
Conversions Between Date Formats 2-52
Date String Formats, 2-53
Output Formats i, 2-54
Current Dateand Time, 2-54
Function Summary 2-55
Regular Expressions 2-57
OV VIEW &ttt ettt ettt e e e e e 2-57
Calling Regular Expression Functions from MATLAB 2-59
Parsing Strings with Regular Expressions 2-63
Other Benefits of Using Regular Expressions 2-67
Metacharacters and Operatorscoou.... 2-68
Character Type Operatorscciiiiiuneeenn... 2-69
Character Representation 2-73
Grouping Operatorsc.uiiiiimnneeneeennnnn 2-74
Nonmatching Operatorscciiiiuunnn.. 2-76
Positional Operatorsccoviiiiiinnnn. 2-77
Lookaround Operatorsccviiiiuunnn.. 2-78
Quantifiersi it e 2-84
H 0) o 1= 2-87
Named Capturecoiiiiiiiiiiinnnn. 2-92
Conditional Expressionscciiiiineneeenn.. 2-94
Dynamic Regular Expressions 2-96
String Replacement 2-105
Handling Multiple Strings, 2-107

Function, Mode Options, Operator, Return Value

SUMMATIES ..ottt ittt ittt 2-110
Symbol Reference 2-119
Asterisk — % e 2-120
At — @ e e 2-120
COolom — & e 2-121
COMIMIA — , it e e 2-122
Curly Braces — {} i 2-123
Dot — . e 2-123
Dot-Dot — .. . e 2-124
Dot-Dot-Dot (Ellipsis) — ... v ovviiii it 2-124
Dot-Parentheses — .()o, 2-126
Exclamation Point —! 2-126
Parentheses — () i, 2-126
Percent — % ... 2-127
Percent-Brace — %{ %}o 2-128
Plus—+ ... 2-128
Semicolon — ; e 2-128
Single Quotes — 7 ... e 2-129
Space Characteriiiiiinneneennnnn. 2-130
Slash and Backslash —/\ 2-130
Square Brackets — [] ... 2-131
Tilde — ~ e 2-131

Functions and Scripts

3

Program Development 3-2
L0 =) T 1= 3-2
Creating a Program, 3-2
Gettingthe BugsOut 3-4
Cleaning Up the Program 3-5
Improving Performance 3-5
Checking ItIn i, 3-6
Protecting Your Source Code 3-6

Working with Functionsin Files 3-9
L0 =) T 1= 3-9

Types of Program Files 3-9

Basic Parts of a Program File 3-10

Creating a Program File 3-15
Providing Help for Your Program 3-18
Cleaning Up the File When Done 3-18
Scripts and Functions 3-21
N T3 1] 1= 3-21
Functions i i i 3-22
Types of Functions 0. 3-23
Organizing Your Functions 3-24
Identifying Dependenciesc. .. 3-25
Calling Functionsttt 3-27
Command vs. Function Syntax 3-27
What Happens When You Call a Function 3-36
Determining Which Function Gets Called 3-36
Calling External Functions 3-40
Running External Programs 3-40
Function Argumentsccuun.. 3-41
L0 =) T 1= 3-41
Input Arguments i 3-41
Output Argumentsutiiiimnnneneeennnnn 3-43
Passing Arguments in Structures or Cell Arrays 3-46
Passing Optional Argumentsc.ouuu.. 3-48
Validating Inputs with Input Parser 3-60
What Is the Input Parser? 3-60
Working with the Example Function 3-61
The inputParser Classccuiiiiiiinnnn. 3-62
Validating Data Passed to a Function 3-63
Substituting Default Values for Arguments Not Passed .. 3-70
Handling Unmatched Inputs 3-71
Interpreting Arguments Passed as Structures 3-72
Other Features of the Input Parser 3-75
Summary of inputParser Methods and Properties 3-78
Functions Provided By MATLAB 3-81
L0 =) T 1= 3-81
Functions i i 3-81
Built-In Functions 0., 3-82
Overloaded MATLAB Functions 3-83

X Contents

Internal Utility Functions 3-84

Types of Functions

4 |

Overview of MATLAB Function Types 4-2
Anonymous Functions 4-3
Constructing an Anonymous Function 4-3
Arrays of Anonymous Functions 4-6
Outputs from Anonymous Functions 4-7
Variables Used in the Expression 4-8
Examples of Anonymous Functions 4-11
Primary Functions 4-15
Nested Functions i, 4-16
Writing Nested Functions 4-16
Calling Nested Functionsccuiiiieeeoo... 4-18
Variable Scope in Nested Functions 4-19
Using Function Handles with Nested Functions 4-21
Restrictions on Assigning to Variables 4-26
Examples of Nested Functions 4-27
Subfunctions i 4-33
L0 =) T 1= 4-33
Calling Subfunctionsciiiiiiiinne... 4-34
Accessing Help for a Subfunction 4-34
Private Functions 4-35
L0 =) T 1= 4-35
Private Folders i, 4-35
Accessing Help for a Private Function 4-36
Overloaded Functions 4-37

xi

xii

Using Objects

5

Contents

MATLAB Objectscoiuiiiiiiiiiinnnnnnn. 5-2
Getting Oriented iiiiiiiiinnnnnnn.. 5-2
Getting Comfortable with Objects 5-2
What Are Objects and Why Use Them? 5-2
Accessing Objects . ..ottt e e 5-3
Objects In the MATLAB Language 5-4
Other Kinds of Objects Used by MATLAB 5-4

General Purpose Vs. Specialized Arrays 5-5
How They Differ0, 5-5
Using General-Purpose Data Structures 5-5
Using Specialized Objects, 5-6

Key Object Conceptscviiiiiiinennnn... 5-8
Basic Conceptscovviiiniii i e 5-8
Classes Describe How to Create Objects 5-8
Properties Contain Data 5-8
Methods Implement Operations 5-9

Creating Objectscitiiiiiiinnnennn. 5-11
Class Constructorccouiiienineennneennnn. 5-11
When to Use Package Names 5-11

Accessing Object Data 5-14
Listing Public Properties 5-14
Getting Property Values ievn... 5-14
Setting Property Values 5-15

Calling Object Methods 5-16
What Operations Can You Perform 5-16
Method Syntax i 5-16
Class of Objects Returned by Methods 5-18

Desktop Tools Are Object Aware 5-19
Tab Completion Works with Objects 5-19
Editing Objects with the Variable Editor 5-19

Getting Information About Objects
The Class of Workspace Variables
Information About Class Members
Logical Tests for Objects
Displaying Objects
Getting Help for MATLAB Objects

Copying Objects
Two Copy Behaviors
Value Object Copy Behavior
Handle Object Copy Behavior
Testing for Handle or Value Class

Destroying Objects
Object Lifecycle
Difference Between clear and delete

Error Handling

6

Error Reporting in a MATLAB Application
OVErVIEW .ttt ittt e
Getting an Exception at the Command Line
Getting an Exception in Your Program Code
Generating a New Exception

Capturing Information About the Error .
OVErVIEW .ttt e e e
The MException Class
Properties of the MException Class
Methods of the MException Class

Throwing an Exception

Responding to an Exception
OVErVIEW ittt it et
The try-catch Statement
Suggestions on How to Handle an Exception

........... 6-2

............ 6-2
........... 6-3

xiii

xiv

Contents

Warnings 6-22

ReportingaWarning, 6-22
Identifyingthe Cause, 6-23
Warning Control 6-24
L0 =) T 1= 6-24
Warning Statements, 6-25
Warning Control Statements 6-26
Output from Control Statements 6-28
Saving and Restoring State 6-31
Backtrace and Verbose Modes 6-32
Debugging Errors and Warnings 6-35

Program Scheduling

7

Using a MATLAB Timer Object 7-2
L0 =) T 1= 7-2
Example: Displaying a Message 7-3

Creating Timer Objectscuvii... 7-5
Creatingthe Object, 7-5
Naming the Object 7-6

Working with Timer Object Properties 7-7
Retrieving the Value of Timer Object Properties 7-7
Setting the Value of Timer Object Properties 7-8

Starting and Stopping Timers 7-10
Starting a Timer ittt 7-10
Starting a Timer at a Specified Time 7-10
Stopping Timer Objectscciiiiiieeneenn... 7-11
Blocking the MATLAB Command Line 7-12

Creating and Executing Callback Functions 7-14
Associating Commands with Timer Object Events 7-14
Creating Callback Functions 7-15

Specifying the Value of Callback Function Properties 7-17

8

Timer Object Execution Modes 7-19
Executing a Timer Callback Function Once 7-19
Executing a Timer Callback Function Multiple Times 7-20
Handling Callback Function Queuing Conflicts 7-21

Deleting Timer Objects from Memory 7-23
Deleting One or More Timer Objects 7-23
Testing the Validity of a Timer Object 7-23

Finding Timer Objects in Memory 7-24
Finding All Timer Objects, 7-24
Finding Invisible Timer Objects 7-24

Performance

Analyzing Your Program’s Performance 8-2
L0 7=} T =) 8-2
The Profiler Utility 8-2
Stopwatch Timer Functions 8-2

Techniques for Improving Performance 8-4
Preallocating Arrayscuiiiiinenennnnnnnn. 8-4
Use Distributed Arrays for Large Datasets 8-5
When Possible, Replace for with parfor (Parallel for) 8-6
Limiting Size and Complexity 8-6
Assigning to Variables, 8-6
Using Appropriate Logical Operators 8-7
Overloading Built-In Functions 8-8
Functions Are Generally Faster Than Scripts 8-8
Load and Save Are Faster Than File I/O Functions 8-8
Vectorizing Loopso e 8-8
Avoid Large Background Processes 8-11

XV

xvi

10

Contents

Memory Usage

9

Memory Allocationcuiiiiiiinnnn... 9-2
Memory Allocation for Arrayscccveeon... 9-2
Data Structures and Memorycuvunu.. 9-7

Memory Management Functions 9-12
The whos Function 9-13

Strategies for Efficient Use of Memory 9-15
Ways to Reduce the Amount of Memory Required 9-15
Using Appropriate Data Storage 9-17
How to Avoid Fragmenting Memory 9-20
Reclaiming Used Memoryc.ccuuuunnn.. 9-22

Resolving “Out of Memory” Exrrors 9-23
General Suggestions for Reclaiming Memory 9-23
Setting the Process Limit 9-24
Disabling Java VM on Startup 9-25
Increasing System Swap Space 9-26
Using the 3GB Switch on Windows Systems 9-27
Freeing Up System Resources on Windows Systems 9-27

Programming Tips

Introduction i 10-2
Command and Function Syntax 10-3
Syntax Help ... i 10-3
Command and Function Syntaxes 10-3
Command Line Continuation 10-3
Completing Commands Using the TabKey 10-4
Recalling Commandsccoutiiiiiinnnennn. 10-4
Clearing Commandsccuiriinineennneennnn. 10-5
Suppressing Output to the Screen 10-5

13 03 R 10-6

Using the Help Browser 10-6
Help on Functions from the Help Browser 10-6
Help on Functions from the Command Window 10-7
Topical Help ... 10-7
PagedOutput 10-8
Writing Your Own Help, 10-8
Help for Subfunctions and Private Functions 10-9
Help for Methods and Overloaded Functions 10-9
Development Environment 10-10
Workspace Browser 10-10
Using the Find and Replace Utility 10-10
Commenting Out a Block of Code 10-11
Creating Functions from Command History 10-11
Editing Functions in EMACS 10-11
Functions i 10-12
Function Structure 10-12
Using Lowercase for Function Names 10-12
Getting a Function’s Nameand Path 10-13
What Files Does a Function Use? 10-13
Dependent Functions, Built-Ins, Classes 10-14
Function Argumentsccuun.. 10-15
Getting the Input and Output Arguments 10-15
Variable Numbers of Arguments 10-15
String or Numeric Argumentsccovv.... 10-16
Passing Arguments in a Structure 10-16
Passing Arguments ina Cell Array 10-17
Program Development 10-18
Planning the Program 10-18
Using Pseudo-Codeo .. 10-18
Selecting the Right Data Structures 10-18
General Coding Practicesccouiuiiieo... 10-19
Naming a Function Uniquely 10-19
The Importance of Comments 10-19
Coding In StePS v v v vt e 10-20
Making Modifications in Stepsccoveein... 10-20
Functions with One Calling Function 10-20
Testing the Final Program 10-20

xXvii

xviii

Contents

Debugging 10-21

The MATLAB Debug Functions 10-21
More Debug Functions, 10-21
The MATLAB Graphical Debugger 10-22
A Quick Way to Examine Variables 10-22
Setting Breakpoints from the Command Line 10-22
Finding Line Numbers to Set Breakpoints 10-23
Stopping Execution on an Error or Warning 10-23
Locating an Error from the Error Message 10-23
Using Warnings to Help Debug 10-24
Making Code Execution Visible 10-24
Debugging Scriptsoviiiii i e 10-24
Variables e 10-25
Rules for Variable Names 10-25
Making Sure Variable Names Are Valid 10-25
Do Not Use Function Names for Variables 10-26
Checking for Reserved Keywords 10-26
Avoid Using i and j for Variables 10-27
Avoid Overwriting Variables in Scripts 10-27
Persistent Variables, 10-27
Protecting Persistent Variables 10-27
Global Variables 10-28
SN g S ... e 10-29
Creating Strings with Concatenation 10-29
Comparing Methods of Concatenation 10-29
Store Arrays of Stringsina Cell Array 10-30
Converting Between Strings and Cell Arrays 10-30
Search and Replace Using Regular Expressions 10-30
Evaluating Expressions 10-32
Find Alternatives to Usingeval 10-32
Assigning to a Series of Variables 10-32
Short-Circuit Logical Operators 10-33
Changing the Counter Variable within a for Loop 10-33
MATLABPath 10-34
Precedence Rules i, 10-34
File Precedence0, 10-35
Adding a Folder to the Search Path 10-35
Handles to Functions Not onthe Path 10-35

Making Toolbox File Changes Visible to MATLAB 10-36
Making Nontoolbox File Changes Visible to MATLAB 10-37

Change Notification on Windows 10-37
Program Control 10-38
Using break, continue, and return 10-38
Using switch Versusif, 10-39
MATLAB case Evaluates Strings 10-39
Multiple Conditions in a case Statement 10-39
Implicit Break in switch-case 10-39
Variable Scopeinaswitch 10-40
Catching Errors with try-catch 10-40
Nested try-catch Blocks 10-41
Forcing an Early Return from a Function 10-41
Saveand Load 10-42
Saving Data from the Workspace 10-42
Loading Data into the Workspace 10-42
Viewing Variables ina MAT-File 10-43
Appendingtoa MAT-Fileo, 10-43
Save and Load on Startupor Quit 10-44
Savingtoan ASCII File 10-44
Files and Filenames 10-45
Naming Functionscouiiiiiiiinnnn. 10-45
Naming Other Files, 10-45
Passing Filenames as Arguments 10-46
Passing Filenames to ASCIT Files 10-46
Determining Filenames at Run-Time 10-46
Returning the Sizeofa File 10-46
Input/Output i 10-48
File I/O Function Overviewccouiuiuunne... 10-48
Common I/O Functionscc i, 10-48
Readable File Formats 10-48
Using the Import Wizard 10-49
Loading Mixed Format Data 10-49
Reading Files with Different Formats 10-49
Interactive Input into Your Program 10-50
Starting MATLAB 10-51

Getting MATLAB to Start Up Faster 10-51

Operating System Compatibility 10-52

Executing O/S Commands from MATLAB 10-52
Searching Text withgrep 10-52
Constructing Paths and Filenames 10-52
Finding the MATLAB Root Folder 10-53
Temporary Directories and Filenames 10-53
Demos ... e e e 10-54
Demos Available with MATLAB 10-54
For More Information 10-55
Current CSSM i i i 10-55
Archived CSSM it i 10-55
MATLAB Technical Support 10-55
Tech Notes ...ttt i et e e 10-55
MATLAB Central00 iiiiiinnnnn.. 10-55
MATLAB Newsletters (Digest, News & Notes) 10-55
MATLAB Documentationc.ccuiiuiiininnn.. 10-56
MATLAB Index of Examples00o.... 10-56
Index

XX Contents

Classes (Data Types)

® “Overview of MATLAB Classes” on page 1-2
¢ “Numeric Classes” on page 1-6

® “The Logical Class” on page 1-29

¢ “Characters and Strings” on page 1-35

e “Structures” on page 1-67

e “Cell Arrays” on page 1-101

¢ “Function Handles” on page 1-127

e “Map Containers” on page 1-150

¢ “Combining Unlike Classes” on page 1-165
¢ “Defining Your Own Classes” on page 1-171

1 Classes (Data Types)

Overview of MATLAB Classes

In this section...

“Fundamental MATLAB Classes” on page 1-2
“How to Use the Different Classes” on page 1-4

Fundamental MATLAB Classes

There are many different data types, or classes, that you can work with in the
MATLAB® software. You can build matrices and arrays of floating-point

and integer data, characters and strings, and logical true and false states.
Function handles connect your code with any MATLAB function regardless
of the current scope. Structures and cell arrays, provide a way to store
dissimilar types of data in the same array.

There are 15 fundamental classes in MATLAB. Each of these classes is in the
form of a matrix or array. This matrix or array is a minimum of 0-by-0 in size
and can grow to an n-dimensional array of any size.

All of the fundamental MATLAB classes are circled in the diagram below:

Overview of MATLAB® Classes

N-DIMENSION ARRAY

BOOLEAN NUMERIC TEXT FUNCTION HETEROGENEQUS
HANDLE CONTAINER

logical h
[function_handle j

FLOATING-POINT INTEGER NAME-BASED INDEX-BASED

‘ ‘ struct cell

SINGLE - DOUBLE - SIGNED UNSIGNED

PRECISION PRECISION
((int8)<= 8-bit =>
(default) (Int16)<= 16-bit =>
(int32)<= 32-bit => (uint32)
(int64) <= 64-bit =>(uint64)

Numeric classes in the MATLAB software include signed and unsigned
integers, and single- and double-precision floating-point numbers. By
default, MATLAB stores all numeric values as double-precision floating
point. (You cannot change the default type and precision.) You can choose
to store any number, or array of numbers, as integers or as single-precision.
Integer and single-precision arrays offer more memory-efficient storage than
double-precision.

All numeric types support basic array operations, such as subscripting and
reshaping. All numeric types except for int64 and uint64 can be used in
mathematical operations.

You can create two-dimensional double and logical matrices using one of

two storage formats: full or sparse. For matrices with mostly zero-valued
elements, a sparse matrix requires a fraction of the storage space required

1-3

1 Classes (Data Types)

for an equivalent full matrix. Sparse matrices invoke methods especially
tailored to solve sparse problems

These classes require different amounts of storage, the smallest being a
logical value or 8-bit integer which requires only 1 byte. It is important to
keep this minimum size in mind if you work on data in files that were written
using a precision smaller than 8 bits.

How to Use the Different Classes
The following table describes these classes in more detail.

Class Name Documentation | Intended Use
double, single | Floating-Point e Required for fractional numeric data.
Numbers

® Double and Single precision.
e Use realmin and realmax to show range of values.
* Two-dimensional arrays can be sparse.

® Default numeric type in MATLAB.

int8, uints, Integers e Use for signed and unsigned whole numbers.
int16, . .

uint16, ® More efficient use of memory.

int32, e Use intmin and intmax to show range of values.
uint32,

int64, uintea ® Choose from 4 sizes (8, 16, 32, and 64 bits).

® Use all but 64-bit in mathematics operations.

char “Characters and | ® Required for text.
Strings” on page

1-35 e Native or unicode.

e Converts to/from numeric.

® Use with regular expressions.

® For multiple strings, use cell arrays.

1-4

Overview of MATLAB® Classes

Class Name

Documentation

Intended Use

logical

Logical Class

Use in relational conditions or to test state.
Can have one of two values: true or false.
Also useful in array indexing.

Two-dimensional arrays can be sparse.

function_handle

“Function
Handles” on page
1-127

Pointer to a function.

Enables passing a function to another function
Can also call functions outside usual scope.
Useful in Handle Graphics callbacks.

Save to MAT-file and restore later.

struct

Structures

Fields store arrays of varying classes and sizes.
Access multiple fields/indices in single operation.
Field names identify contents.

Simple method of passing function arguments.
Use in comma-separated lists for efficiency.

More memory required for overhead

cell

Cell Arrays

Cells store arrays of varying classes and sizes.
Allows freedom to package data as you want.
Manipulation of elements is similar to arrays.
Simple method of passing function arguments.
Use in comma-separated lists for efficiency.

More memory required for overhead

1-5

1 Classes (Data Types)

Numeric Classes

1-6

In this section...

“Overview” on page 1-6

“Integers” on page 1-6

“Floating-Point Numbers” on page 1-10
“Complex Numbers” on page 1-20

“Infinity and NaN” on page 1-21
“Identifying Numeric Classes” on page 1-23

“Display Format for Numeric Values” on page 1-23

“Function Summary” on page 1-25

Overview

Numeric classes in the MATLAB software include signed and unsigned
integers, and single- and double-precision floating-point numbers. By
default, MATLAB stores all numeric values as double-precision floating
point. (You cannot change the default type and precision.) You can choose
to store any number, or array of numbers, as integers or as single-precision.
Integer and single-precision arrays offer more memory-efficient storage than
double-precision.

All numeric types support basic array operations, such as subscripting and
reshaping. All numeric types except for int64 and uint64 can be used in
mathematical operations.

Integers

MATLAB has four signed and four unsigned integer classes. Signed types
enable you to work with negative integers as well as positive, but cannot
represent as wide a range of numbers as the unsigned types because one bit
is used to designate a positive or negative sign for the number. Unsigned
types give you a wider range of numbers, but these numbers can only be
Zero or positive.

This section covers:

Numeric Classes

e “Creating Integer Data” on page 1-7

e “Arithmetic Operations on Integer Classes” on page 1-9

* “Largest and Smallest Values for Integer Classes” on page 1-9

® “Integer Functions” on page 1-10

MATLAB supports 1-, 2-, 4-, and 8-byte storage for integer data. You can
save memory and execution time for your programs if you use the smallest

integer type that accommodates your data. For example, you do not need a
32-bit integer to store the value 100.

Here are the eight integer classes, the range of values you can store with each
type, and the MATLAB conversion function required to create that type:

Class Range of Values Conversion Function
Signed 8-bit integer -27 to 27-1 int8

Signed 16-bit integer -215 t0 215-1 int16

Signed 32-bit integer -231 to 231.1 int32

Signed 64-bit integer -263 to 263.1 int64

Unsigned 8-bit integer 0 to 28-1 uints

Unsigned 16-bit integer | 0 to 216-1 uinti16

Unsigned 32-bit integer | 0 to 232-1 uint32

Unsigned 64-bit integer | 0 to 264-1 uinte4

Creating Integer Data

MATLAB stores numeric data as double-precision floating point (double)
by default. To store data as an integer, you need to convert from double to
the desired integer type. Use one of the conversion functions shown in the
table above.

For example, to store 325 as a 16-bit signed integer assigned to variable x, type

x = int16(325);

1-7

1 Classes (Data Types)

1-8

If the number being converted to an integer has a fractional part, MATLAB
rounds to the nearest integer. If the fractional part is exactly 0.5, then from
the two equally nearby integers, MATLAB chooses the one for which the
absolute value is larger in magnitude:

X = 325.499; X = x + .001;
int16(x) int16(x)
ans = ans =

325 326

If you need to round a number using a rounding scheme other than the
default, MATLAB provides four rounding functions: round, fix, floor, and
ceil. In this example, the fix function enables you to override the default
and round towards zero when the fractional part of a number is .5:

X = 325.5;

int16(fix(x))
ans =
325

Arithmetic operations that involve both integers and floating-point always
result in an integer data type. MATLAB rounds the result, when necessary,
according to the default rounding algorithm. The example below yields an
exact answer of 1426.75 which MATLAB then rounds to the next highest
integer:

int16(325) * 4.39
ans =
1427

The integer conversion functions are also useful when converting other
classes, such as strings, to integers:

str = 'Hello World';

int8(str)
ans =
72 101 108 108 111 32 87 111 114 108 100

Numeric Classes

Arithmetic Operations on Integer Classes
MATLAB can perform integer arithmetic on the following types of data:

¢ Integers or integer arrays of the same integer data type. This yields a
result that has the same data type as the operands:

X = uint32([132 347 528]) .* uint32(75);

® Integers or integer arrays and scalar double-precision floating-point
numbers. This yields a result that has the same data type as the integer
operands:

X = uint32([132 347 528]) .* 75.49;

For all binary operations in which one operand is an array of integer data
type and the other is a scalar double, MATLAB computes the operation using
elementwise double-precision arithmetic, and then converts the result back to
the original integer data type.

For a list of the operations that support integer classes, see Nondouble Data
Type Support in the arithmetic operators reference page.

Largest and Smallest Values for Integer Classes

For each integer data type, there is a largest and smallest number that you

can represent with that type. The table shown under “Integers” on page 1-6

lists the largest and smallest values for each integer data type in the “Range
of Values” column.

You can also obtain these values with the intmax and intmin functions:

intmax('int8") intmin('int8"')
ans = ans =
127 -128

If you convert a number that is larger than the maximum value of an integer
data type to that type, MATLAB sets it to the maximum value. Similarly, if

you convert a number that is smaller than the minimum value of the integer
data type, MATLAB sets it to the minimum value. For example,

x = int8(300) X = int8(-300)

1-9

1 Classes (Data Types)

X = X =
127 -128

Also, when the result of an arithmetic operation involving integers exceeds
the maximum (or minimum) value of the data type, MATLAB sets it to the
maximum (or minimum) value:

X int8(100) * 3 X
X = X =
127 -128

int8(-100) * 3

You can make MATLAB return a warning when your input is outside the
range an integer data type. This is described in the next section.

Integer Functions

See Integer Functions on page 1-26 for a list of functions most commonly used
with integers in MATLAB.

Floating-Point Numbers

MATLAB represents floating-point numbers in either double-precision or
single-precision format. The default is double precision, but you can make
any number single precision with a simple conversion function.

This section covers:

e “Double-Precision Floating Point” on page 1-11

e “Single-Precision Floating Point” on page 1-11

® “Creating Floating-Point Data” on page 1-11

¢ “Arithmetic Operations on Floating-Point Numbers” on page 1-13

® “Largest and Smallest Values for Floating-Point Classes” on page 1-14

e “Accuracy of Floating-Point Data” on page 1-15

® “Avoiding Common Problems with Floating-Point Arithmetic” on page 1-17
¢ “Floating-Point Functions” on page 1-19

e “References” on page 1-19

1-10

Numeric Classes

Double-Precision Floating Point

MATLAB constructs the double-precision (or double) data type according
to IEEE® Standard 754 for double precision. Any value stored as a double
requires 64 bits, formatted as shown in the table below:

Bits Usage

63 Sign (0 = positive, 1 = negative)
62 to 52 Exponent, biased by 1023
51to0 Fraction f of the number 1.f

Single-Precision Floating Point

MATLAB constructs the single-precision (or single) data type according
to IEEE Standard 754 for single precision. Any value stored as a single
requires 32 bits, formatted as shown in the table below:

Bits Usage

31 Sign (0 = positive, 1 = negative)
30 to 23 Exponent, biased by 127

22to 0 Fraction f of the number 1.f

Because MATLAB stores numbers of type single using 32 bits, they require
less memory than numbers of type double, which use 64 bits. However,
because they are stored with fewer bits, numbers of type single are
represented to less precision than numbers of type double.

Creating Floating-Point Data

Use double-precision to store values greater than approximately 3.4 x 1038
or less than approximately -3.4 x 10%%. For numbers that lie between these
two limits, you can use either double- or single-precision, but single requires
less memory.

Creating Double-Precision Data. Because the default numeric type

for MATLAB is double, you can create a double with a simple assignment
statement:

1-11

1 Classes (Data Types)

1-12

x = 25.783;

The whos function shows that MATLAB has created a 1-by-1 array of type
double for the value you just stored in x:

whos x
Name Size Bytes Class
X 1x1 8 double

Use isfloat if you just want to verify that x is a floating-point number. This
function returns logical 1 (true) if the input is a floating-point number, and
logical O (false) otherwise:

isfloat(x)
ans =
1

You can convert other numeric data, characters or strings, and logical data to
double precision using the MATLAB function, double. This example converts
a signed integer to double-precision floating point:

y = int64(-589324077574); % Create a 64-bit integer
x = double(y) % Convert to double
X:

-5.8932e+011

Creating Single-Precision Data. Because MATLAB stores numeric data as
a double by default, you need to use the single conversion function to create
a single-precision number:

X = single(25.783);

The whos function returns the attributes of variable x in a structure. The
bytes field of this structure shows that when x is stored as a single, it requires
just 4 bytes compared with the 8 bytes to store it as a double:

xAttrib = whos('x');
xAttrib.bytes
ans =

Numeric Classes

4

You can convert other numeric data, characters or strings, and logical data to
single precision using the single function. This example converts a signed
integer to single-precision floating point:

y = int64(-589324077574); % Create a 64-bit integer
X = single(y) % Convert to single
X:

-5.8932e+011

Arithmetic Operations on Floating-Point Numbers

This section describes which classes you can use in arithmetic operations
with floating-point numbers.

Double-Precision Operations. You can perform basic arithmetic operations
with double and any of the following other classes. When one or more
operands is an integer (scalar or array), the double operand must be a scalar.
The result is of type double, except where noted otherwise:

single — The result is of type single

double

int* or uint* — The result has the same data type as the integer operand
char

logical

This example performs arithmetic on data of types char and double. The
result is of type double:

c = 'uppercase' - 32;
class(c)
ans =

double

char(c)

1-13

1 Classes (Data Types)

1-14

ans =
UPPERCASE

Single-Precision Operations. You can perform basic arithmetic operations
with single and any of the following other classes. The result is always

single:
® single
® double
® char

® Jogical

In this example, 7.5 defaults to type double, and the result is of type single:

x = single([1.32 3.47 5.28]) .* 7.5;

class(x)
ans =
single

Largest and Smallest Values for Floating-Point Classes

For the double and single classes, there is a largest and smallest number
that you can represent with that type.

Largest and Smallest Double-Precision Values. The MATLAB functions
realmax and realmin return the maximum and minimum values that you
can represent with the double data type:

str = 'The range for double is:\n\t%g to %g and\n\t %g to %g'
sprintf(str, -realmax, -realmin, realmin, realmax)

ans =

The range for double is:
-1.79769e+308 to -2.22507e-308 and
2.22507e-308 to 1.79769e+308

Numeric Classes

Numbers larger than realmax or smaller than -realmax are assigned the
values of positive and negative infinity, respectively:

realmax + .0001e+308
ans =
Inf

-realmax - .0001e+308
ans =
-Inf

Largest and Smallest Single-Precision Values. The MATLAB functions
realmax and realmin, when called with the argument 'single', return the
maximum and minimum values that you can represent with the single data

type:

str = 'The range for single is:\n\t%g to %g and\n\t %g to %g';
sprintf(str, -realmax('single'), -realmin('single'),
realmin('single'), realmax('single'))

ans =

The range for single is:
-3.40282e+038 to -1.17549e-038 and
1.17549e-038 to 3.40282e+038

Numbers larger than realmax(single’) or smaller than -realmax ('single’) are
assigned the values of positive and negative infinity, respectively:

realmax('single') + .0001e+038
ans =
Inf

-realmax('single') - .0001e+038
ans =
-Inf

Accuracy of Floating-Point Data
If the result of a floating-point arithmetic computation is not as precise as
you had expected, it is likely caused by the limitations of your computer’s

1-15

1 Classes (Data Types)

1-16

hardware. Probably, your result was a little less exact because the hardware
had insufficient bits to represent the result with perfect accuracy; therefore, it
truncated the resulting value.

Double-Precision Accuracy. Because there are only a finite number

of double-precision numbers, you cannot represent all numbers in
double-precision storage. On any computer, there is a small gap between each
double-precision number and the next larger double-precision number. You
can determine the size of this gap, which limits the precision of your results,
using the eps function. For example, to find the distance between 5 and the
next larger double-precision number, enter

format long

eps(5)
ans =
8.881784197001252e-016

This tells you that there are no double-precision numbers between 5 and
5 + eps(5). If a double-precision computation returns the answer 5, the
result is only accurate to within eps(5).

The value of eps(x) depends on x. This example shows that, as x gets larger,
so does eps(Xx):

eps(50)
ans =
7.105427357601002e-015

If you enter eps with no input argument, MATLAB returns the value of
eps (1), the distance from 1 to the next larger double-precision number.

Single-Precision Accuracy. Similarly, there are gaps between any two
single-precision numbers. If x has type single, eps(x) returns the distance
between x and the next larger single-precision number. For example,

X = single(5);
eps(x)

returns

Numeric Classes

ans =
4.7684e-007

Note that this result is larger than eps(5). Because there are fewer
single-precision numbers than double-precision numbers, the gaps
between the single-precision numbers are larger than the gaps between
double-precision numbers. This means that results in single-precision
arithmetic are less precise than in double-precision arithmetic.

For a number x of type double, eps(single(x)) gives you an upper bound
for the amount that x is rounded when you convert it from double to single.
For example, when you convert the double-precision number 3.14 to single,
it is rounded by

double(single(3.14) - 3.14)
ans =
1.0490e-007

The amount that 3.14 is rounded is less than

eps(single(3.14))
ans =
2.3842e-007

Avoiding Common Problems with Floating-Point Arithmetic
Almost all operations in MATLAB are performed in double-precision
arithmetic conforming to the IEEE standard 754. Because computers only
represent numbers to a finite precision (double precision calls for 52 mantissa
bits), computations sometimes yield mathematically nonintuitive results. It is
important to note that these results are not bugs in MATLAB.

Use the following examples to help you identify these cases:

Example 1 — Round-Off or What You Get Is Not What You Expect.
The decimal number 4/3 is not exactly representable as a binary fraction. For
this reason, the following calculation does not give zero, but rather reveals
the quantity eps.

e =1 -3%4/3 - 1)

1-17

1 Classes (Data Types)

e =
2.2204e-016

Similarly, 0.1 is not exactly representable as a binary number. Thus, you get
the following nonintuitive behavior:

.0;

:10
0.1;

QO
|
I = O

1
a +

Note that the order of operations can matter in the computation:

b =1e-16 + 1 - 1e-16;
c = 1e-16 - 1e-16 + 1;
b == ¢
ans =

0

There are gaps between floating-point numbers. As the numbers get larger,
so do the gaps, as evidenced by:

(253 + 1) - 2°53

ans =
0

Since pi is not really pi, it is not surprising that sin(pi) is not exactly zero:
sin(pi)

ans =
1.224646799147353e-016

1-18

Numeric Classes

Example 2 — Catastrophic Cancellation. When subtractions are
performed with nearly equal operands, sometimes cancellation can occur
unexpectedly. The following is an example of a cancellation caused by
swamping (loss of precision that makes the addition insignificant).

sqrt(le-16 + 1) - 1

ans =
0

Some functions in MATLAB, such as expm1 and log1p, may be used to
compensate for the effects of catastrophic cancellation.

Example 3 — Floating-Point Operations and Linear Algebra.
Round-off, cancellation, and other traits of floating-point arithmetic combine
to produce startling computations when solving the problems of linear
algebra. MATLAB warns that the following matrix A is ill-conditioned, and
therefore the system Ax = b may be sensitive to small perturbations:

A = diag([2 eps]);
b = [2; eps];

y = A\b;

W

arning: Matrix is close to singular or badly scaled.
Results may be inaccurate. RCOND = 1.110223e-016.

These are only a few of the examples showing how IEEE floating-point
arithmetic affects computations in MATLAB. Note that all computations
performed in IEEE 754 arithmetic are affected, this includes applications
written in C or FORTRAN, as well as MATLAB. For more examples

and information, see Technical Note 1108 Common Problems with
Floating-Point Arithmetic.

Floating-Point Functions

See Floating-Point Functions on page 1-26 for a list of functions most
commonly used with floating-point numbers in MATLAB.

References

The following references provide more information about floating-point
arithmetic.

1-19

http://www.mathworks.com/support/tech-notes/1100/1108.html
http://www.mathworks.com/support/tech-notes/1100/1108.html

1 Classes (Data Types)

[1] Moler, Cleve, “Floating Points,” MATLAB News and Notes, Fall,
1996. A PDF version is available on the MathWorks Web site at
http://www.mathworks.com/company/newsletters/news_notes/pdf/Fall96Cleve.pdf

[2] Moler, Cleve, Numerical Computing with MATLAB, S.1.A.M.
A PDF version is available on the MathWorks Web site at
http://www.mathworks.com/moler/.

Complex Numbers

Complex numbers consist of two separate parts: a real part and an imaginary
part. The basic imaginary unit is equal to the square root of -1. This is
represented in MATLAB by either of two letters: i or j.

Creating Complex Numbers

The following statement shows one way of creating a complex value in
MATLAB. The variable x is assigned a complex number with a real part of 2
and an imaginary part of 3:

X =2 + 3i;

Another way to create a complex number is using the complex function. This
function combines two numeric inputs into a complex output, making the first
input real and the second imaginary:

X
y

rand(3) * 5;
rand(3) * -8;

z = complex(x, y)

4.7842 -1.09211 0.8648 -1.59311 1.2616 -2.27531
2.6130 -0.09411i 4.8987 -2.3898i 4.3787 -3.75381
4.4007 -7.1512i 1.3572 -5.29151 3.6865 -0.51821

You can separate a complex number into its real and imaginary parts using
the real and imag functions:

zr
zr

real(z)

4.7842 0.8648 1.2616

1-20

Numeric Classes

2.6130 4.8987 4.3787
4.4007 1.3572 3.6865

zi = imag(z)

zi =
-1.0921 -1.5931 -2.27583
-0.0941 -2.3898 -3.7538
-7.1512 -5.2915 -0.5182

Complex Number Functions

See Complex Number Functions on page 1-27 for a list of functions most
commonly used with MATLAB complex numbers in MATLAB.

Infinity and NaN

MATLAB uses the special values inf, -inf, and NaN to represent values that
are positive and negative infinity, and not a number respectively.

Infinity

MATLAB represents infinity by the special value inf. Infinity results from
operations like division by zero and overflow, which lead to results too large
to represent as conventional floating-point values. MATLAB also provides
a function called inf that returns the IEEE arithmetic representation for
positive infinity as a double scalar value.

Several examples of statements that return positive or negative infinity in
MATLAB are shown here.

x = 1/0 x = 1.e1000
X = X =
Inf Inf
X = exp(1000) x = 1log(0)
X = X =

Inf -Inf

Use the isinf function to verify that x is positive or negative infinity:

1-21

1 Classes (Data Types)

1-22

x = 1log(0);

isinf(x)
ans =
1

NaN

MATLAB represents values that are not real or complex numbers with a
special value called NaN, which stands for Not a Number. Expressions like 0/0
and inf/inf result in NaN, as do any arithmetic operations involving a NaN:

x = 0/0
X:
NaN

Use the isnan function to verify that the real part of x is NaN:

isnan(x)
ans =
1

MATLAB also provides a function called NaN that returns the IEEE arithmetic
representation for NaN as a double scalar value:

X = NaN;

whos x
Name Size Bytes Class
X 1x1 8 double

Logical Operations on NaN. Because two NaNs are not equal to each
other, logical operations involving NaN always return false, except for a test
for inequality, (NaN ~= NaN):

NaN > NaN
ans =
0

Numeric Classes

NaN ~= NaN
ans =
1

Infinity and NaN Functions

See Infinity and NaN Functions on page 1-27 for a list of functions most
commonly used with inf and NaN in MATLAB.

Identifying Numeric Classes

You can check the data type of a variable x using any of these commands.

Command

Operation

whos x

Display the data type of x.

xType = class(x);

Assign the data type of x to a variable.

isnumeric(x)

Determine if x is a numeric type.

isa(x, 'integer') Determine if x 1s the specified numeric type.
isa(x, 'uint64') (Examples for any integer, unsigned 64-bit integer,
isa(x, 'float') any floating point, double precision, and single
isa(x, 'double') precision are shown here).

isa(x, 'single')

isreal(x) Determine if x is real or complex.

isnan(x) Determine if x is Not a Number (NaN).

isinf(x) Determine if x 1s infinite.

isfinite(x)

Determine if x is finite.

Display Format for Numeric Values

By default, MATLAB displays numeric output as 5-digit scaled, fixed-point
values. You can change the way numeric values are displayed to any of the
following:

e 5.-digit scaled fixed point, floating point, or the best of the two
e 15-digit scaled fixed point, floating point, or the best of the two

1-23

1 Classes (Data Types)

1-24

® A ratio of small integers
® Hexadecimal (base 16)

¢ Bank notation
All available formats are listed on the format reference page.

To change the numeric display setting, use either the format function or

the Preferences dialog box (accessible from the MATLAB File menu). The
format function changes the display of numeric values for the duration of a
single MATLAB session, while your Preferences settings remain active from
one session to the next. These settings affect only how numbers are displayed,
not how MATLAB computes or saves them.

Display Format Examples

Here are a few examples of the various formats and the output produced from
the following two-element vector x, with components of different magnitudes.

Check the current format setting:
get(0, 'format')

ans =
short

Set the value for x and display in 5-digit scaled fixed point:

X
X:

[4/3 1.2345e-6]

1.3333 0.0000

Set the format to 5-digit floating point:
format short e
X

X =
1.3333e+000 1.2345e-006

Set the format to 15-digit scaled fixed point:

format long

Numeric Classes

X
X =
1.33333333333333 0.00000123450000

Set the format to 'rational’ for small integer ratio output:

format rational
X
X:
4/3 1/810045

Set an integer value for x and display it in hexadecimal (base 16) format:

format hex
X = uint32(876543210)
X:

343efcea

Setting Numeric Format in a Program

To temporarily change the numeric format inside a program, get the original
format using the get function and save it in a variable. When you finish
working with the new format, you can restore the original format setting
using the set function as shown here:

origFormat = get(0, 'format');
format('rational');

-- Work in rational format --

set (0, 'format', origFormat);

Function Summary

MATLAB provides these functions for working with numeric classes:

¢ Integer Functions on page 1-26
¢ Floating-Point Functions on page 1-26

® Complex Number Functions on page 1-27

1-25

1 Classes (Data Types)

1-26

¢ Infinity and NaN Functions on page 1-27

¢ (lass Identification Functions on page 1-28

¢ Qutput Formatting Functions on page 1-28

Integer Functions

Function

Description

int8, int16,
int32, int64

Convert to signed 1-, 2-, 4-, or 8-byte integer.

uint8, uinti1e6,
uint32, uint64

Convert to unsigned 1-, 2-, 4-, or 8-byte integer.

ceil Round towards plus infinity to nearest integer
class Return the data type of an object.

fix Round towards zero to nearest integer

floor Round towards minus infinity to nearest integer
isa Determine if input value has the specified data type.
isinteger Determine if input value is an integer array.
isnumeric Determine if input value is a numeric array.

round Round towards the nearest integer

Floating-Point Functions

Function Description

double Convert to double precision.

single Convert to single precision.

class Return the data type of an object.

isa Determine if input value has the specified data type.
isfloat Determine if input value is a floating-point array.
isnumeric Determine if input value is a numeric array.

Numeric Classes

Floating-Point Functions (Continued)

Function Description

eps Return the floating-point relative accuracy. This value
is the tolerance MATLAB uses in its calculations.

realmax Return the largest floating-point number your computer
can represent.

realmin Return the smallest floating-point number your

computer can represent.

Complex Number Functions

Function Description

complex Construct complex data from real and imaginary
components.

ior j Return the imaginary unit used in constructing complex
data.

real Return the real part of a complex number.

imag Return the imaginary part of a complex number.

isreal Determine if a number is real or imaginary.

Infinity and NaN Functions

Function Description

inf Return the IEEE value for infinity.

isnan Detect NaN elements of an array.

isinf Detect infinite elements of an array.
isfinite Detect finite elements of an array.

nan Return the IEEE value for Not a Number.

1-27

1 Classes (Data Types)

1-28

Class Identification Functions

Function Description

class Return data type (or class).

isa Determine if input value is of the specified data type.
isfloat Determine if input value is a floating-point array.
isinteger Determine if input value is an integer array.
isnumeric Determine if input value is a numeric array.

isreal Determine if input value is real.

whos Display the data type of input.

Output Formatting Functions

Function

Description

format

Control display format for output.

The logical Class

The Logical Class

In this section...

“Overview of the Logical Class” on page 1-29

“Identifying Logical Arrays” on page 1-30

“Functions that Return a Logical Result” on page 1-31

“Using Logical Arrays in Conditional Statements” on page 1-33

“Using Logical Arrays in Indexing” on page 1-34

Overview of the Logical Class

The logical data type represents a logical true or false state using the
numbers 1 and 0, respectively. Certain MATLAB functions and operators
return logical true or false to indicate whether a certain condition was
found to be true or not. For example, the statement 50>40 returns a logical
true value.

Logical data does not have to be scalar; MATLAB supports arrays of logical
values as well. For example, the following statement returns a vector of
logicals indicating false for the first two elements and true for the last three:

[30 40 50 60 70] > 40
ans =
0 0 1 1 1

This statement returns a 4-by-4 array of logical values:

x
1l

magic(4) >= 9
1 0 0 1
0 1 1 0
1 0 0 1
0 1 1 0

The MATLAB functions that have names beginning with is (e.g., ischar,
issparse) also return a logical value or array:

a=[2.56.7 9.2 inf 4.8];

1-29

1 Classes (Data Types)

1-30

isfinite(a)
ans =
1 1 1 0 1

Logical arrays can also be sparse as long as they have no more than two
dimensions:

X = sparse(magic(20) > 395)
X =
(1,1)
(1,4)
(1,5)
(20,18)
(20,19)

—_ o A

Identifying Logical Arrays
This table shows the commands you can use to determine whether or not an

array X is logical. The last function listed, cellfun, operates on cell arrays,
which you can read about in the section on cell arrays.

Command Operation

whos (x) Display value and data type for x.
islogical(x) Return true if array is logical.

isa(x, 'logical') Return true if array is logical.

class(x) Return string with data type name.
cellfun('islogical', x) Check each cell array element for logical.

Examples of Identifying Logical Arrays

Create a 3-by-6 array of logicals and use the whos function to identify the size,
byte count, and class (i.e., data type) of the array.

% Initialize the state of the random number generator.
rand('state',0);

A = rand(3,6) > .5

A =

The logical Class

1 0 0 0 1 0
0 1 0 1 1 1
1 1 1 1 0 1
whos A
Name Size Bytes Class Attributes
A 3x6 18 logical

Find the class of each of these expressions:
B = logical(-2.8); C = false; D = 50>40; E = isinteger(4.9);

whos B C D E

Name Size Bytes Class Attributes
B 1x1 1 logical
C 1x1 1 logical
D 1x1 1 logical
E 1x1 1 logical

Display the class of A:

% Initialize the state of the random number generator.
rand('state',0);
A = rand(3,6) > .5

fprintf('A is a %s\n', class(A))
A is a logical

Create cell array C and use islogical to identify the logical elements:

c ={1, 0, true, false, pi, A};
cellfun('islogical', C)
ans =

0 0 1 1 0 1

Functions that Return a Logical Result

This table shows some of the MATLAB operations that return a logical true
or false. Most mathematics operations are not supported on logical values.

1-31

1 Classes (Data Types)

1-32

Function Operation
true, false Setting value to true or false
logical Numeric to logical conversion

& (and), | (or), ~ (not), xor, any, all | Logical operations

&&, || Short-circuit AND and OR

== (eq), ~= (ne), < (1t), > (gt), <= (1e), | Relational operations
>= (ge)

All is* functions, cellfun Test operations

strcmp, strnemp, strcempi, strnempi | String comparisons

Examples of Functions that Return a Logical Result

MATLAB functions that test the state of a variable or expression return
a logical result:

A = isstrprop('abc123def', 'alpha')
A =
1 1 1 0 0 0 1 1 1

Logical functions such as xor return a logical result:

xor([1 0 'ab' 2.4], [0 0 'ab', 0])
ans =
1 0 0 1

Note however that the bitwise operators do not return a logical:

X = bitxor(3, 12);

whos X
Name Size Bytes Class Attributes
X 1x1 8 double

String comparison functions also return a logical:

S = 'D:\matlab\mfiles\test19.m';
strncmp (S, 'D:\matlab', 9)
ans =

../ref/is.html

The logical Class

1

Note the difference between the elementwise and short-circuit logical
operators. Short-circuit operators, such as && and | |, test only as much of the
input expression as necessary. In the second part of this example, it makes
no difference that B is undefined because the state of A alone determines
that the expression is false:

A

0;

A &B
??? Undefined function or variable 'B'.

A && B

ans

0

One way of implementing an infinite loop is to use the while function along
with the logical constant true:

while true

a
a

end

=[1; b =1[I;

input('Enter username: ', 's');

if ~isempty(a)
b = input('Enter password: ', 's');
end

if ~isempty(b)

disp 'Attempting to log in to account
break

end

Using Logical Arrays in Conditional Statements
Conditional statements are useful when you want to execute a block of code
only when a certain condition is met. For example, the sprintf command
shown below is valid only if str is a nonempty string:

str

= input('Enter input string: ', 's');

if ~isempty(str) && ischar(str)

sprintf('Input string is ''%s''', str)

1-33

1 Classes (Data Types)

1-34

end

Now run the code:

Enter input string: Hello
ans =
Input string is 'Hello’

Using Logical Arrays in Indexing

A logical matrix provides a different type of array indexing in MATLAB.
While most indices are numeric, indicating a certain row or column number,
logical indices are positional. That is, it is the position of each 1 in the logical
matrix that determines which array element is being referred to.

See “Using Logicals in Array Indexing” for more information on this subject.

Characters and Strings

Characters and Strings

In this section...

“Creating Character Arrays” on page 1-35

“Cell Arrays of Strings” on page 1-40

“Formatting Strings” on page 1-42

“String Comparisons” on page 1-56

“Searching and Replacing” on page 1-59
“Converting from Numeric to String” on page 1-60
“Converting from String to Numeric” on page 1-62

“Function Summary” on page 1-64

Creating Character Arrays

A character in the MATLAB software is actually an integer value converted to
its Unicode® UTF-16 character equivalent. A character string is a vector with
components that are the numeric codes for the characters.

The elements of a character or string belong to the char class. Arrays of class
char can hold multiple strings, as long as each string in the array has the
same length. (This is because MATLAB arrays must be rectangular.) To store
an array of strings of unequal length, use a cell array.

Creating a Single Character

Store a single character in the MATLAB workspace by enclosing the character
in single quotation marks and assigning it to a variable:

hChar = 'h';

This creates a 1-by-1 matrix of class char. Each character occupies 2 bytes
of workspace memory:

whos hChar
Name Size Bytes Class Attributes

1-35

1 Classes (Data Types)

1-36

hChar 1x1 2 char

The numeric value of hChar is 104:

uint8(hChar)
ans =
104

Creating a Character String

Create a string by enclosing a sequence of letters in single quotation marks.
MATLAB represents the five-character string shown below as a 1-by-5 vector
of class char. It occupies 2 bytes of memory for each character in the string:

str = 'Hello';

whos str
Name Size Bytes Class Attributes
str 1x5 10 char

The uint8 function converts characters to their numeric values:

str_numeric = uint8(str)
str_numeric =
72 101 108 108 111

The char function converts the integer vector back to characters:

str_alpha = char([72 101 108 108 111])
str_alpha
Hello

Creating a Rectangular Character Array

You can join two or more strings together to create a new character array.
This is called concatenation and is explained for numeric arrays in the
section “Concatenating Matrices”. As with numeric arrays, you can combine
character arrays vertically or horizontally to create a new character array.

Characters and Strings

Alternatively, combine strings into a cell array. Cell arrays are flexible
containers that allow you to easily combine strings of varying length.

Combining Strings Vertically. To combine strings into a two-dimensional
character array, use either of these methods:

e Apply the MATLAB concatenation operator, []. Separate each row with a
semicolon (;). Each row must contain the same number of characters. For
example, combine three strings of equal length:

dev_title = ['Thomas R. Lee';
'Sr. Developer';
'SFTware Corp.'];

If the strings have different lengths, pad with space characters as needed.
For example:

mgr_title = ['Harold A. Jorgensen 3
'Assistant Project Manager';
'SFTware Corp. "1;

e (Call the char function. If the strings are different length, char pads the
shorter strings with trailing blanks so that each row has the same number
of characters. For example, combine three strings of different lengths:

mgr_title = char('Harold A. Jorgensen',
'Assistant Project Manager', 'SFTware Corp.');

The char function creates a 3-by-25 character array mgr_title.

Combining Strings Horizontally. To combine strings into a single row
vector, use either of these methods:

e Apply the MATLAB concatenation operator, []. Separate the input strings
with a comma or a space. This method preserves any trailing spaces in the
input arrays. For example, combine several strings:

name = ‘Thomas R. Lee';
title = ‘Sr. Developer';
company = 'SFTware Corp.';

1-37

../ref/specialcharacters.html
../ref/specialcharacters.html

1 Classes (Data Types)

full name = [name ', ' title ', ' company]
MATLAB returns
full name =

Thomas R. Lee, Sr. Developer, SFTware Corp.

e (Call the string concatenation function, strcat. This method removes
trailing spaces in the inputs. For example, combine strings to create a
hypothetical e-mail address:

name = 'myname 3
domain = 'mydomain ';
ext = 'com "3
address = strcat(name, '@', domain, '.', ext)

MATLAB returns

address =
myname@mydomain.com

Identifying Characters in a String

Use any of the following functions to identify a character or string, or certain
characters in a string:

Function Description
ischar Determine whether the input is a character array.
isletter Find all alphabetic letters in the input string.
isspace Find all space characters in the input string.
isstrprop Find all characters of a specific category.

str = 'Find the space characters in this string';

% I | (. |

% 5 9 15 26 29 34

find(isspace(str))
ans =

1-38

Characters and Strings

5 9 15 26 29 34

Working with Space Characters

The blanks function creates a string of space characters. The following
example creates a string of 15 space characters:

s = blanks(15)
S =
To make the example more useful, append a ' |' character to the beginning

and end of the blank string so that you can see the output:

[']'" s '"|"] % Make result visible.
ans =

| |
Insert a few nonspace characters in the middle of the blank string:
S(6:10) = 'AAAAA';

[']' s "|"] % Make result visible.
ans =
| AAAAA |

You can justify the positioning of these characters to the left or right using
the strjust function:

sLeft = strjust(s, 'left');
['|' sLeft '|'] % Make result visible.
ans =

| AAAAA
sRight = strjust(s, 'right');
['|' sRight '|'] % Make result visible.
ans =

| AAAAA |

Remove all trailing space characters with deblank:

1-39

1 Classes (Data Types)

1-40

sDeblank = deblank(s);

['|' sDeblank '|'] % Make result visible.
ans =
| AAAAA |

Remove all leading and trailing spaces with strtrim:
sTrim = strtrim(s);

[']" sTrim '|"] % Make result visible.
ans =
| AAAAA |

Expanding Character Arrays

Generally the MathWorks does not recommend expanding the size of an
existing character array by assigning additional characters to indices beyond
the bounds of the array such that part of the array becomes padded with zeros.

Cell Arrays of Strings

Creating strings in a regular MATLAB array requires that all strings in the
array be of the same length. This often means that you have to pad blanks at
the end of strings to equalize their length. However, another type of MATLAB
array, the cell array, can hold different sizes and types of data in an array
without padding. Cell arrays provide a more flexible way to store strings of
varying length.

For details on cell arrays, see Cell Arrays in the Programming Fundamentals

documentation.

Converting to a Cell Array of Strings

The cellstr function converts a character array into a cell array of strings.
Consider this character array:

data = ['Allison Jones';'Development ';'Phoenix "1;

Each row of the matrix is padded so that all have equal length (in this case,
13 characters).

Characters and Strings

Now use cellstr to create a column vector of cells, each cell containing one
of the strings from the data array:

celldata = cellstr(data)
celldata =
'Allison Jones'
'Development’
'Phoenix’

Note that the cellstr function strips off the blanks that pad the rows of the
input string matrix:

length(celldata{3})
ans =
7

The iscellstr function determines if the input argument is a cell array of
strings. It returns a logical 1 (true) in the case of celldata:

iscellstr(celldata)
ans =
1

Use char to convert back to a standard padded character array:

strings = char(celldata)
strings =
Allison Jones
Development
Phoenix

length(strings(3,:))

ans =
13

Functions for Cell Arrays of Strings
This table describes the MATLAB functions for working with cell arrays.

1-41

1 Classes (Data Types)

Function Description

cellstr Convert a character array to a cell array of strings.
char Convert a cell array of strings to a character array.
deblank Remove trailing blanks from a string.

iscellstr Return true for a cell array of strings.

sort Sort elements in ascending or descending order.
strcat Concatenate strings.

strcmp Compare strings.

You can also use the following set functions with cell arrays of strings.

Function Description

intersect Set the intersection of two vectors.
ismember Detect members of a set.

setdiff Return the set difference of two vectors.
setxor Set the exclusive OR of two vectors.
union Set the union of two vectors.

unique Set the unique elements of a vector.

Formatting Strings
The following MATLAB functions offer the capability to compose a string that

includes ordinary text and data formatted to your specification:

® sprintf — Write formatted data to an output string

e fprintf — Write formatted data to an output file or the Command Window
® warning — Display formatted data in a warning message

¢ error — Display formatted data in an error message and abort

® assert — Generate an error when a condition is violated

e MException — Capture error information

1-42

Characters and Strings

The syntax of each of these functions includes formatting operators similar
to those used by the printf function in the C programming language. For
example, %s tells MATLAB to interpret an input value as a string, and %d
means to format an integer using decimal notation.

The general formatting syntax for these functions is

functionname(..., format_string, valuei, value2, ..., valueN)

where the format_string argument expresses the basic content and
formatting of the final output string, and the value arguments that follow
supply data values to be inserted into the string.

Here is a sample sprintf statement, also showing the resulting output string:

sprintf('The price of %s on %d/%d/%d was $%.2f.',
‘bread', 7, 1, 2006, 2.49)
ans =
The price of bread on 7/1/2006 was $2.49.

The following sections cover

® “The Format String” on page 1-44

e “Input Value Arguments” on page 1-45

® “The Formatting Operator” on page 1-46

e “Constructing the Formatting Operator” on page 1-47
® “Setting Field Width and Precision” on page 1-52

e “Restrictions for Using Identifiers” on page 1-55

Note The examples in this section of the documentation use only the sprintf
function to demonstrate how string formatting works. However, you can run
the examples using the fprintf, warning, and error functions as well.

1-43

1 Classes (Data Types)

1-44

The Format String

The first input argument in the sprintf statement shown above is the
format_string:

'The price of %s on %d/%d/%d was $%.2f.'

This argument can include ordinary text, formatting operators and, in some
cases, special characters. The formatting operators for this particular string
are: %S, %d, %d, %d, and %.2f.

Following the format_string argument are five additional input arguments,
one for each of the formatting operators in the string:

'bread', 7, 1, 2006, 2.49

When MATLAB processes the format string, it replaces each operator with
one of these input values.

Special Characters. Special characters are a part of the text in the string.
But, because they cannot be entered as ordinary text, they require a unique
character sequence to represent them. Use any of the following character
sequences to insert special characters into the output string.

Tolnserta. . . Use. ..

Single quotation mark t

Percent character %%
Backslash \\
Alarm \a
Backspace \b
Form feed \f
New line \n
Carriage return \r
Horizontal tab \t
Vertical tab \v

Characters and Strings

To Inserta. . . Use. . .
Hexadecimal number, N \xN
Octal number, N \N

Input Value Arguments
In the syntax

functionname(..., format_string, valuei, value2, ..., valueN)

The value arguments must immediately follow format_string in the
argument list. In most instances, you supply one of these value arguments
for each formatting operator used in the format_string. Scalars, vectors,
and numeric and character arrays are valid value arguments. You cannot
use cell arrays or structures.

If you include fewer formatting operators than there are values to insert,
MATLAB reuses the operators on the additional values. This example shows
two formatting operators and six values to insert into the string:

sprintf('ss = %d\n', 'A', 479, 'B', 352, 'C', 651)
ans
= 479
352
651

O W > Il
1l

You can also specify multiple value arguments as a vector or matrix. The
format_string needs one %s operator for the entire matrix or vector:

mvec = [77 65 84 76 65 66];
sprintf('%ss ', char(mvec))

ans =
MATLAB

Sequential and Numbered Argument Specification.

You can place value arguments in the argument list either sequentially (that
is, in the same order in which their formatting operators appear in the string),

1-45

1 Classes (Data Types)

1-46

or by identifier (adding a number to each operator that identifies which value
argument to replace it with). By default, MATLAB uses sequential ordering.

To specify arguments by a numeric identifier, add a positive integer followed
by a $ sign immediately after the % sign in the operator. Numbered argument
specification is explained in more detail under the topic “Value Identifiers”
on page 1-52.

Ordered Sequentially Ordered By Identifier
sprintf('%s %s %s', ... sprintf('%3%s %2%s %13$s',
'1st', '2nd', '3rd') '1st', '2nd', '3rd')
ans = ans =
1st 2nd 3rd 3rd 2nd 1st

The Formatting Operator

Formatting operators tell MATLAB how to format the numeric or character
value arguments and where to insert them into the string. These operators
control the notation, alignment, significant digits, field width, and other
aspects of the output string.

A formatting operator begins with a % character, which may be followed by a
series of one or more numbers, characters, or symbols, each playing a role in
further defining the format of the insertion value. The final entry in this series
is a single conversion character that MATLAB uses to define the notation
style for the inserted data. Conversion characters used in MATLAB are based
on those used by the printf function in the C programming language.

Here is a simple example showing five formatting variations for a common
value:

A = pi*100*ones(1,5);

sprintf (' %f \n %.2f \n %+.2f \n %12.2f \n %012.2f \n', A)
ans =

314.159265 % Display in fixed-point notation (%f)

314.16 % Display 2 decimal digits (%.2f)

+314.16 % Display + for positive numbers (%+.2f)
314.16 % Set width to 12 characters (%12.2f)

Characters and Strings

000000314.16 % Replace leading spaces with 0 (%012.2f)

Constructing the Formatting Operator

The fields that make up a formatting operator in MATLAB are as shown here,
in the order they appear from right to left in the operator. The rightmost field,
the conversion character, is required; the five to the left of that are optional.
Each of these fields is explained in a section below:

¢ Conversion Character — Specifies the notation of the output.

® Subtype — Further specifies any nonstandard types.

® Precision — Sets the number of digits to display to the right of the decimal
point, or the number of significant digits to display.

¢ Field Width — Sets the minimum number of digits to display.

¢ Flags — Controls the alignment, padding, and inclusion of plus or minus
signs.

e Value Identifiers — Map formatting operators to value input arguments.
Use the identifier field when value arguments are not in a sequential order
in the argument list.

Here is an example of a formatting operator that uses all six fields. (Space
characters are not allowed in the operator. They are shown here only to
improve readability of the figure).

% 3$0-12.5bu

I[dentifier J I— Conversion character

Flags Subtype
Field width Precision

An alternate syntax, that enables you to supply values for the field width and
precision fields from values in the argument list, is shown below. See the
section “Specifying Field Width and Precision Outside the format String” on
page 1-54 for information on when and how to use this syntax. (Again, space
characters are shown only to improve readability of the figure.)

1-47

1 Classes (Data Types)

% 1$ *2$ *3% e

Value 4 | ‘— Precision

Field width

Each field of the formatting operator is described in the following sections.
These fields are covered as they appear going from right to left in the
formatting operator, starting with the Conversion Character and ending
with the Identifier field.

Conversion Character. The conversion character specifies the notation of
the output. It consists of a single character and appears last in the format
specifier. It is the only required field of the format specifier other than the
leading % character.

Specifier

(o

o

« = m o

Description

Single character

Decimal notation (signed)

Exponential notation (using a lowercase e as in 3.1415e+00)
Exponential notation (using an uppercase E as in 3.1415E+00)
Fixed-point notation

The more compact of %e or %f. (Insignificant zeros do not
print.)

Same as %g, but using an uppercase E

Octal notation (unsigned)

String of characters

Decimal notation (unsigned)

Hexadecimal notation (using lowercase letters a—f)

Hexadecimal notation (using uppercase letters A—F)

This example uses conversion characters to display the number 46 in decimal,
fixed-point, exponential, and hexadecimal formats:

1-48

Characters and Strings

A = 46*ones(1,4);

sprintf('% T %e %X', A)
ans =
46 46.000000 4.600000e+001 2E

Subtype. The subtype field is a single alphabetic character that immediately
precedes the conversion character. The following nonstandard subtype
specifiers are supported for the conversion characters %0, %x, %X, and %u.

b The underlying C data type is a double rather than an unsigned
integer. For example, to print a double-precision value in
hexadecimal, use a format like '%bx".

t The underlying C data type is a float rather than an unsigned integer.

To specify the number of bits for the conversion of an integer value
(corresponding to conversion characters %d, %i, %u, %0, %X, or %X), use one of
the following subtypes.

1 64-bit value.
h 16-bit value.

Precision. precision in a formatting operator is a nonnegative integer
that immediately follows a period. For example, the specifier %7.3f, has
a precision of 3. For the %g specifier, precision indicates the number of
significant digits to display. For the %f, %e, and %E specifiers, precision
indicates how many digits to display to the right of the decimal point.

Here are some examples of how the precision field affects different types
of notation:

sprintf('%g %.2Q %t %.2f', pi*50*ones(1,4))

ans =
157.08 1.6e+002 157.079633 157.08

Precision is not usually used in format specifiers for strings (i.e., %s). If you
do use it on a string and if the value p in the precision field is less than the

1-49

1 Classes (Data Types)

1-50

number of characters in the string, MATLAB displays only p characters of the
string and truncates the rest.

You can also supply the value for a precision field from outside of the format
specifier. See the section “Specifying Field Width and Precision Outside the
format String” on page 1-54 for more information on this.

For more information on the use of precision in formatting, see “Setting
Field Width and Precision” on page 1-52.

Field Width. Field width in a formatting operator is a nonnegative integer
that tells MATLAB the minimum number of digits or characters to use when
formatting the corresponding input value. For example, the specifier %7 .3f,
has a width of 7.

Here are some examples of how the width field affects different types of
notation:

sprintf('|%e|%15e|%f|%15f|', pi*50*ones(1,4))
ans =
|1.570796e+002| 1.570796e+002|157.079633| 157.079633 |

When used on a string, the field width can determine whether MATLAB
pads the string with spaces. If width is less than or equal to the number of
characters in the string, it has no effect.

sprintf('%30s', 'Pad left with spaces')
ans =
Pad left with spaces

You can also supply a value for field width from outside of the format
specifier. See the section “Specifying Field Width and Precision Outside the
format String” on page 1-54 for more information on this.

For more information on the use of field width in formatting, see “Setting
Field Width and Precision” on page 1-52.

Flags. You can control the output using any of these optional flags:

Characters and Strings

Character Description Example

A minus sign (-) Left-justifies the %-5.2d
converted argument
in its field.

A plus sign (+) Always prints a sign %+5.2d
character (+ or —).

A space () Inserts a space before the % 5.2f
value.

Zero (0) Pads with zeros rather %05.2f

than spaces.

A pound sign (#) Modifies selected numeric %#5.0f
conversions:

® For %0, %X, or %X, print
0, 0x, or OX prefix.

® For %f, %e, or %E, print
decimal point even
when precision is 0.

® For %g or %G, do not
remove trailing zeros
or decimal point.

Right- and left-justify the output. The default is to right-justify:

sprintf('right-justify: %12.2f\nleft-justify: %-12.2f',
12.3, 12.3)
ans =
right-justify: 12.30
left-justify: 12.30

Display a + sign for positive numbers. The default is to omit the + sign:
sprintf('no sign: %12.2f\nsign: %+12.2f"',

12.3, 12.3)
ans =

1-51

1 Classes (Data Types)

1-52

no sign: 12.30
sign: +12.30

Pad to the left with spaces or zeros. The default is to use space-padding:

sprintf('space-padded: %12.2f\nzero-padded: %012.2f"',
5.2, 5.2)
ans =
space-padded: 5.20
zero-padded: 000000005.20

Note You can specify more than one flag in a formatting operator.

Value Identifiers. By default, MATLAB inserts data values from the
argument list into the string in a sequential order. If you have a need to use
the value arguments in a nonsequential order, you can override the default
by using a numeric identifier in each format specifier. Specify nonsequential
arguments with an integer immediately following the % sign, followed by

a $ sign.

Ordered Sequentially Ordered By Identifier
sprintf('%s %s %s', ... sprintf('%3$s %2%s %1$s',
"1st', '2nd', '3rd') '1st', '2nd', '3rd')
ans = ans =
1st 2nd 3rd 3rd 2nd 1st

Setting Field Width and Precision
This section provides further information on the use of the field width and
precision fields of the formatting operator:

e “Effect on the Output String” on page 1-53

® “Specifying Field Width and Precision Outside the format String” on page
1-54
e “Using Identifiers In the Width and Precision Fields” on page 1-54

Characters and Strings

Effect on the Output String. The figure below illustrates the way in
which the field width and precision settings affect the output of the string
formatting functions. In this figure, the zero following the % sign in the
formatting operator means to add leading zeros to the output string rather
than space characters:

Whole part of input Result has w digits,
value has has 3 digits extending to the

left with zeros

Format operator |

123.45678 ——— > %09.3f ———» 00123.457

,—’ field width: w = 9 |

recision: p=3 .
Fractional part of input P P Fractional part of the
value has 5 digits result has p digits
and is rounded

General rules for formatting

e If precision is not specified, it defaults to 6.

e If precision (p) is less than the number of digits in the fractional part of the
input value (f), then only p digits are shown to the right of the decimal
point in the output, and that fractional value is rounded.

e If precision (p) is greater than the number of digits in the fractional part of
the input value (f), then p digits are shown to the right of the decimal point
in the output, and the fractional part is extended to the right with p-f zeros.

e If field width is not specified, it defaults to precision + 1 + the number of
digits in the whole part of the input value.

e If field width (w) is greater than p+1 plus the number of digits in the whole
part of the input value (n), then the whole part of the output value is
extended to the left with w- (n+1+p) space characters or zeros, depending
on whether or not the zero flag is set in the Flags field. The default is to
extend the whole part of the output with space characters.

1-53

1 Classes (Data Types)

Specifying Field Width and Precision Outside the format String. To
specify field width or precision using values from a sequential argument list,
use an asterisk (*) in place of the field width or precision field of the
formatting operator.

This example formats and displays three numbers. The formatting operator
for the first, %*f, has an asterisk in the field width location of the formatting
operator, specifying that just the field width, 15, is to be taken from the
argument list. The second operator, %. *f puts the asterisk after the decimal
point meaning, that it is the precision that is to take its value from the
argument list. And the third operator, %* . *f, specifies both field width and
precision in the argument list:

sprintf('S%s*f %.*f S*.*f', ...
15, 123.45678, ... %
3, 16.42837,
6, 4, pi) %

Width for 123.45678 is 15
Precision for rand*20 is .3
Width & Precision for pi is 6.4

o°

ans =
123.456780 16.428 3.1416

You can mix the two styles. For example, this statement gets the field width
from the argument list and the precision from the format string:

sprintf('s*.2f', 5, 123.45678)
ans =
123.46

Using Identifiers In the Width and Precision Fields. You can also
derive field width and precision values from a nonsequential (i.e., numbered)
argument list. Inside the formatting operator, specify field width and/or
precision with an asterisk followed by an identifier number, followed by

a $ sign.

This example from the previous section shows how to obtain field width and
precision from a sequential argument list:

sprintf ('%s*f %.*f S*.*f',
15, 123.45678,

3, 16.42837,
6, 4, pi)

1-54

Characters and Strings

ans =
123.456780 16.428 3.1416

Here is an example of how to do the same thing using numbered ordering.
Field width for the first output value is 15, precision for the second value is
3, and field width and precision for the third value is 6 and 4, respectively.
If you specify field width or precision with identifiers, then you must specify
the value with an identifier as well:

sprintf ('%1$*4$f %2$.*5$F %3$*6$.*7$f ',
123.45678, 16.42837, pi, 15, 3, 6, 4)

ans =
123.456780 16.428 3.1416

Restrictions for Using Identifiers

If any of the formatting operators in a string include an identifier field, then
all of the operators in that string must do the same; you cannot use both
sequential and nonsequential ordering in the same function call.

Valid Syntax

Invalid Syntax

ans

1234

%d %d %d', ... sprintf('%d %3$d %d %d',
)

1, 2, 3, 4)
ans =

If your command provides more value arguments than there are formatting
operators in the format string, MATLAB reuses the operators. However,
MATLAB allows this only for commands that use sequential ordering.

You cannot reuse formatting operators when making a function call with
numbered ordering of the value arguments.

1-55

1 Classes (Data Types)

Valid Syntax

Invalid Syntax

sprintf('%d’

ans =
1234

y 1, 2, 3, 4)

sprintf('%1%d',
ans =
1

1, 2, 3, 4)

Also, do not use identifiers when the value arguments are in the form of a
vector or array:

Valid Syntax

Invalid Syntax

Vv =

sprintf('%.4f

ans =

1.4000 2.7000 3.1000

[1.4 2.7 3.1]; vV =

[1.4 2.7 3.1];
%.4F %.4F', V) sprintf('%3$.4f %1$.4F %2$.4F', v)
ans =

Empty string: 1-by-0

1-56

String Comparisons

There are several ways to compare strings and substrings:

® You can compare two strings, or parts of two strings, for equality.
® You can compare individual characters in two strings for equality.
® You can categorize every element within a string, determining whether

each element is a character or white space.

These functions work for both character arrays and cell arrays of strings.

Comparing Strings for Equality

You can use any of four functions to determine if two input strings are
identical:

® strcmp determines if two strings are identical.

¢ strncmp determines if the first n characters of two strings are identical.

Characters and Strings

® strcmpi and strncmpi are the same as strcmp and strncmp, except that
they ignore case.

Consider the two strings

stri
str2

‘hello’';
"help';

Strings str1 and str2 are not identical, so invoking strcmp returns logical 0
(false). For example,

C
C =

strcmp(stri1,str2)

0

Note For C programmers, this is an important difference between the
MATLAB strcmp and C stremp () functions, where the latter returns 0 if
the two strings are the same.

The first three characters of str1 and str2 are identical, so invoking strncmp
with any value up to 3 returns 1:

C = strncmp(stri1, str2, 2)
C:
1

These functions work cell-by-cell on a cell array of strings. Consider the two
cell arrays of strings

A {'pizza'; 'chips'; 'candy'};
B = {'pizza'; 'chocolate'; 'pretzels'};

Now apply the string comparison functions:

strcmp(A,B)
ans =

1

0

0
strncmp (A,B,1)

1-57

1 Classes (Data Types)

o = =1

Comparing for Equality Using Operators

You can use MATLAB relational operators on character arrays, as long as
the arrays you are comparing have equal dimensions, or one is a scalar. For
example, you can use the equality operator (==) to determine where the
matching characters are in two strings:

A = 'fate';
B = 'cake';
A ==B
ans =
0 1 0 1
All of the relational operators (>, >=, <, <=, ==, ~=) compare the values of

corresponding characters.

Categorizing Characters Within a String
There are three functions for categorizing characters inside a string:

1 isletter determines if a character is a letter.
2 isspace determines if a character is white space (blank, tab, or new line).

3 isstrprop checks characters in a string to see if they match a category
you specify, such as

¢ Alphabetic

¢ Alphanumeric

® Lowercase or uppercase
® Decimal digits

* Hexadecimal digits

e Control characters

1-58

../ref/relationaloperators.html

Characters and Strings

® Graphic characters
® Punctuation characters

e Whitespace characters
For example, create a string named mystring:
mystring = 'Room 401';

isletter examines each character in the string, producing an output vector
of the same length as mystring:

A
A =

isletter(mystring)
i 1 1 1 0 0 0 O

The first four elements in A are logical 1 (true) because the first four
characters of mystring are letters.

Searching and Replacing

MATLAB provides several functions for searching and replacing characters in
a string. (MATLAB also supports search and replace operations using regular
expressions. See Regular Expressions.)

Consider a string named label:

label = 'Sample 1, 10/28/95"';

The strrep function performs the standard search-and-replace operation.
Use strrep to change the date from '10/28"' to '10/30"':

newlabel = strrep(label, '28', '30')
newlabel =
Sample 1, 10/30/95

strfind returns the starting position of a substring within a longer string. To
find all occurrences of the string 'amp' inside label, use

position = strfind(label, 'amp')

position =
2

1-59

1 Classes (Data Types)

The position within label where the only occurrence of 'amp' begins is the
second character.

The textscan function parses a string to identify numbers or substrings.
Describe each component of the string with conversion specifiers, such as
%s for strings, %d for integers, or %f for floating-point numbers. Optionally,
include any literal text to ignore.

For example, identify the sample number and date string from label:

parts = textscan(label, 'Sample %d, %s');

parts{:}
ans =
1
ans =
'10/28/95"

To parse strings in a cell array, use the strtok function. For example:

c = {'all in good time';

‘'my dog has fleas';

‘leave no stone unturned'};
first_words = strtok(c)

Converting from Numeric to String

The functions listed in this table provide a number of ways to convert numeric
data to character strings.

Function Description Example

char Convert a positive integer to an equivalent [72 105] — 'Hi'
character. (Truncates any fractional parts.)

int2str Convert a positive or negative integer to a [72 105] — '72 105"
character type. (Rounds any fractional parts.)

num2str Convert a numeric type to a character type of the [72 105] —

specified precision and format.

'72/105/"' (format
set to %1d/)

1-60

Characters and Strings

Function Description Example

mat2str Convert a numeric type to a character type of the [72 105] — '[72
specified precision, returning a string MATLAB 105]"
can evaluate.

dec2hex Convert a positive integer to a character type of [72 105] — '48 69'
hexadecimal base.

dec2bin Convert a positive integer to a character type of [72 105] — '1001000
binary base. 1101001"

dec2base Convert a positive integer to a character type of [72 105] — '110

any base from 2 through 36.

151" (base set to 8)

Converting to a Character Equivalent

The char function converts integers to Unicode character codes and returns a

string composed of the equivalent characters:

X = [77 65 84 76 65 66];
char(x)
ans =

MATLAB

Converting to a String of Numbers

The int2str, num2str, and mat2str functions convert numeric values to
strings where each character represents a separate digit of the input value.
The int2str and num2str functions are often useful for labeling plots. For
example, the following lines use num2str to prepare automated labels for the
x-axis of a plot:

function plotlabel(x, y)

plot(x, y)

str1 = num2str(min(x));

str2 = num2str(max(x));

out = ['Value of f from ' str1 ' to ' str2];
xlabel(out);

1-61

1 Classes (Data Types)

Converting to a Specific Radix

Another class of conversion functions changes numeric values into strings
representing a decimal value in another base, such as binary or hexadecimal
representation. This includes dec2hex, dec2bin, and dec2base.

Converting from String to Numeric

The functions listed in this table provide a number of ways to convert

character strings to numeric data.

Function

Description

Example

uintN (e.g., uints)

Convert a character to an integer code that
represents that character.

'Hi' — 72 105

str2num Convert a character type to a numeric type. '72 105' — [72 105]
str2double Similar to str2num, but offers better {'72" '105'} — [72
performance and works with cell arrays of 105]
strings.
hex2num Convert a numeric type to a character type ‘Al —
of specified precision, returning a string that '-1.4917e-154"
MATLAB can evaluate.
hex2dec Convert a character type of hexadecimal base | 'A' — 10
to a positive integer.
bin2dec Convert a positive integer to a character type | '1010' — 10
of binary base.
base2dec Convert a positive integer to a character type | '12' — 10 (if base ==

of any base from 2 through 36.

8)

1-62

Converting from a Character Equivalent

Character arrays store each character as a 16-bit numeric value. Use one of
the integer conversion functions (e.g., uint8) or the double function to convert
strings to their numeric values, and char to revert to character representation:

name = 'Thomas R. Lee';

name = double(name)
name

Characters and Strings

84 104 111 109 97 115 32 82 46 32 76 101 101

name
name
Thomas R. Lee

char(name)

Converting from a Numeric String
Use str2num to convert a character array to the numeric value represented by
that string:

str '37.294e-1";
val = str2num(str)
val =

3.7294

The str2double function converts a cell array of strings to the
double-precision values represented by the strings:

c = {'37.294e-1'; '-58.375'; '13.796'};
d = str2double(c)
d:
3.7294
-58.3750
13.7960
whos
Name Size Bytes Class
c 3x1 224 cell
d 3x1 24 double

Converting from a Specific Radix

To convert from a character representation of a nondecimal number to the
value of that number, use one of these functions: hex2num, hex2dec, bin2dec,
or base2dec.

1-63

1 Classes (Data Types)

The hex2num and hex2dec functions both take hexadecimal (base 16) inputs,
but hex2num returns the IEEE double-precision floating-point number it
represents, while hex2dec converts to a decimal integer.

Function Summary

MATLAB provides these functions for working with character arrays:

¢ Functions to Create Character Arrays on page 1-64

¢ Functions to Modify Character Arrays on page 1-64

® Functions to Read and Operate on Character Arrays on page 1-65

® Functions to Search or Compare Character Arrays on page 1-65

¢ Functions to Determine Class or Content on page 1-65

® Functions to Convert Between Numeric and String Classes on page 1-66

® Functions to Work with Cell Arrays of Strings as Sets on page 1-66

Functions to Create Character Arrays

Function Description

‘str’ Create the string specified between quotes.
blanks Create a string of blanks.

sprintf Write formatted data to a string.

strcat Concatenate strings.

char Concatenate strings vertically.

Functions to Modify Character Arrays

Function Description

deblank Remove trailing blanks.

lower Make all letters lowercase.

sort Sort elements in ascending or descending order.
strjust Justify a string.

1-64

Characters and Strings

Functions to Modify Character Arrays (Continued)

Function Description

strrep Replace one string with another.
strtrim Remove leading and trailing white space.
upper Make all letters uppercase.

Functions to Read and Operate on Character Arrays

Function Description
eval Execute a string with MATLAB expression.
sscanf Read a string under format control.

Functions to Search or Compare Character Arrays

Function Description

regexp Match regular expression.

strcmp Compare strings.

strcmpi Compare strings, ignoring case.

strfind Find one string within another.

strncmp Compare the first N characters of strings.
strncmpi Compare the first N characters, ignoring case.
strtok Find a token in a string.

textscan Read data from a string.

Functions to Determine Class or Content

Function Description

iscellstr Return true for a cell array of strings.
ischar Return true for a character array.
isletter Return true for letters of the alphabet.

1-65

1 Classes (Data Types)

1-66

Functions to Determine Class or Content (Continued)

Function Description
isstrprop Determine if a string is of the specified category.
isspace Return true for white-space characters.

Functions to Convert Between Numeric and String Classes

Function Description

char Convert to a character or string.

cellstr Convert a character array to a cell array of strings.
double Convert a string to numeric codes.

int2str Convert an integer to a string.

mat2str Convert a matrix to a string you can run eval on.
num2str Convert a number to a string.

str2num Convert a string to a number.

str2double Convert a string to a double-precision value.

Functions to Work with Cell Arrays of Strings as Sets

Function Description

intersect Set the intersection of two vectors.
ismember Detect members of a set.

setdiff Return the set difference of two vectors.
setxor Set the exclusive OR of two vectors.
union Set the union of two vectors.

unique Set the unique elements of a vector.

Structures

Structures

In this section...

“What Is a Structure?” on page 1-67

“Creating a Structure” on page 1-69

“Structure Fields” on page 1-76

“Concatenating Structures” on page 1-79

“Indexing into a Struct Array” on page 1-80

“Returning Data from a Struct Array” on page 1-82

“Using Structures with Functions” on page 1-86

“Converting Between Struct Array and Cell Array” on page 1-89
“Organizing Data in Structure Arrays” on page 1-91

“Operator Summary” on page 1-97

“Function Summary” on page 1-98

What Is a Structure?

A structure is a MATLAB data type that provides the means to store
hierarchical data together in a single entity. A structure consists mainly
of data containers, called fields, and each of these fields stores an array of
some MATLAB data type. You assign a name to each field as you create
the structure. The figure below shows a structure s that has three fields:

a, b, and c.

a [1]4]7]2]29]3] (1x6 double)

b —— James (1x5 char)
Cl——|s8|1]s
3|5]|7 (3x3 double)

419]2

1-67

1 Classes (Data Types)

Each field of a structure contains a separate MATLAB array. This array can
belong to any one MATLAB or user-defined class, and can have any valid
array dimensions. A second field of the same structure can belong to an
entirely different class, and can also have different dimensions than the first.
The fields of the structure shown above, for example, contain a 1-by-6 array of
class double, a 1-by-5 array of class char, and a 3-by-3 array of double.

Like all MATLAB data types, the structure is an array. The class of a
structure is called struct, so an array of structures is often referred to as
a struct array. Like other MATLAB arrays, a struct array can have any
dimensions. The struct array shown below has the dimensions 1-by-2 and
1s composed of two elements: s(1) and s(2). Each of these elements is a
structure with fields a, b, and ¢ of its own.

s
I | |
s(1) s(2)
{1x6 double)
ap—|1[4]7]2]9]3] al—— Anne (ix4 char)
b|— James br— (1x1 double)
(1x5 char)
Cl——|s8]1]s Ccl—-
3[s]7
NEE

{3x3 double) (7x1 double)

[N[o]n]a]wm]m]

Each element of a struct array must contain the same number of fields and
use the same field names as every other element of that struct array. The
arrays of data that are stored in these fields, however, do not have to match;
they can belong to different classes, and they can have different dimensions.
In the struct array shown above, for example, fields b and ¢ of element s (1)
contain arrays of different classes and dimensions. The same holds true for
fields that are named the same but belong to different elements of the struct
array. An example of this is field b in s(1) and field b in s(2).

1-68

Structures

Reasons to Use a Structure

Perhaps the most common reason for using a structure (or a cell array) is
the ability to store arrays of mixed classes and sizes. Most MATLAB arrays
must contain the same number of elements which must also be of the same
class. The role of the structure, and cell array, as containers of heterogeneous
data is very important.

A structure also provides the means to store selected data together in a single
entity. This offers you the ability to access and operate on all or parts of

the data collectively. You can apply functions directly to a structure, pass
the structure to and from your functions, display the value of any fields, or
perform most any MATLAB operation on the contents of a structure.

A third reason to use structures is that they give you the ability to apply text
labels to your data, as opposed to using array subscripting.

Comparing Struct Arrays with Cell Arrays

Struct arrays and cell arrays are similar in purpose and, in some ways, also
design. Both provide a means of storing heterogeneous data in containers of
different size and type. Probably the most noticeable difference between the
two 1s that the containers of a structure are named fields, whereas a cell
array uses numerically indexed cells.

Structures are often used in applications where organization of the data is of
high importance. Cell arrays are often used when working with data that you
intend to process by index in a programming control loop. Cell arrays are also
useful in storing character strings of different lengths.

There are many reasons for choosing either structures, cell arrays, or both for
your work in MATLAB. For more information on cell arrays, see “Cell Arrays”
on page 1-101 in the MATLAB Programming Fundamentals documentation.

Creating a Structure

This section describes how to create struct arrays of different shapes and
sizes, how MATLAB keeps the number of fields the same for all elements, and
how to preallocate memory for larger structures.

1-69

1 Classes (Data Types)

1-70

Creating Structures and Structure Fields

There are two ways of creating a MATLAB structure: by individual
assignments to its fields, or by a single call to the struct function. The
figure below shows a 1-by-1 structure s having three fields: a, b, and c. The
two sets of commands that can create this structure are shown to the left of
and below the figure:

s

s.a=>5; a [5] (a1 double)
s.b = 10; b (1x1 double)
s.c = 15; c [15] (11 double)

OR...

s = struct('a’, 5, 'b', 10, 'c', 15);

The three statements at the top left are an example of individual assignment
to fields. The syntax s.a used in the first of these statements refers to field

a of structure s. The structure does not exist yet, so MATLAB creates the
structure and the given field a, and assigns the value 5 to the field. The two
remaining statements add two new fields to the structure and set their values
to 10 and 15, respectively.

The statement at the bottom left uses the struct function to create the
structure and its fields and to assign the respective values to each. See the
reference page for the struct function for the various syntax options you
can use.

Structures with Nonscalar Fields. The next figure creates a three-field
structure to contain nonscalar array values. The statements used to create
this structure are very much like those used in the previous figure.

Structures

s.a=[147293]; a [1]a][7[2]2]3] (1x6 double)
s.b ='James'; b James (1x5 char)
s.c = magic(3); C 8]1]6

3|5]|7 {3x3 double)

4]9]2

OR...

s = struct('a’', [147 29 3], 'b', 'James', 'c’, magic(3));

Nonscalar Struct Arrays. The next figure creates a struct array s that has
two elements, s(1) and s(2). Each element of the struct array has three
fields: a, b, and c. To create this array by assigning to fields, you need to
specify which element of s you are assigning to. For example, to create a field
b for element 2 of struct array s, assign to s(2) .b.

The struct function requires a slightly different syntax when creating fields
in multiple elements of the struct array. Follow each field name argument
with a list of values enclosed in curly braces {}. The enclosed list specifies the
values to be assigned to that field for the successive elements of the struct
array. For example, the first two input arguments shown in the struct
command below are 'a' and {[1 4 7 2 9 3], 'Anne'}. This tells MATLAB
to assign the vector [1 4 7 2 9 3] to s(1).a, and the string 'Anne' to
s(2).a:

1-71

1 Classes (Data Types)

s(1) s(2)
(1x6 double)
s(1).a=[147293]; a [1]a]7]2]5]3] a Anne (ix4 char)
s(2).a="Anne';
@ b James b (1x1 double)
s(1).b = 'James’; (1x5 char)
s(2).b = pi; c s[1]e c [1]
(2) pi; ane]
s(1).c = magic(3); ABRE H
s(2).c = (1:7)%; (3x3 double) E (7x1 double)
6|
OR... H

s = struct('a', {[147 29 3], 'Anne'},
'b', {'James’, pi},
'c', {magic(3), (1:7)'{);

In mmatlab, curly braces {} operator constructs a cell array. One use of cell
arrays is as a convenient way to pass arguments when calling a function. This
1s exactly how they are used with the struct function. When you use this
operator to pass multiple field values to the struct function, you are actually
passing these values packaged in a cell array. The struct function, upon
receiving the cell array argument, removes the field values from the cell array
and assigns them to the fields specified in your struct command.

Suppose that, in the example above, you want to create a field a of for struct
element s (1). But instead of s(1) .a being a 1-by-6 numeric array, you want
it to be a 1-by-6 cell array. In that case, you would need to enclose the first
argument itself with curly braces:

s = struct('a', {{1 4 7 2 9 3}, 'Anne'},
'b', {'Jdames', pi},
‘c', {magic(3), (1:7)'});

Note When calling the struct function, use one set of curly braces {} to pass
multiple field values, and use two sets of curly braces {{}} to create a cell
array in the specified field.

1-72

Structures

Nested Structures. The next figure shows an example of one struct array
stored (or nested) within another struct array. The inner struct array, called
myfun, is a collection of two function handles. The commands shown to the
left build the two structures, storing the inner structure in field ¢ of the first
element of the outer structure:

s(1).a=[147293]; | |

s(2).a="Anne'; s(1) s(2)
| 1, (1x6 double)
:8;;: - ;:;Ji?mes ’ a [1]a]7]2]9]5] a Anne (1x4 char)
. - r
n]yfun_f]_ = @mysar; b Ja?l.l:sischar) b (1ix1 double)
myfun.f2 = @mysum;
C myfun C [1]
s(1).c = myfun;]
s(2).c = (1:7)%; mysqr 3]
’ fl @ (fZN:ctlion handle) B (7x1 double)
OR... f2 @mysum E
{function handle)

myfun = struct('f1', @mysqr, 'f2', @mysum);
s = struct('a’', {[147 29 3], '"Anne'},

'b', {'James’, pi},

'c’, {myfun, (1:7)'});

How you organize your structure will depend on your use case. See the
reference page for the struct function for more information on using this
function to create structures.

Handling Unassigned Fields

Each element of a nonscalar struct array must have the same set of fields.
Whenever you add a new field to a struct array, MATLAB adds a field of the
same name to all elements of the struct array.

For example, if you enter the following commands:

s.a 5;
s.b 10;
s(2).a = 15;

1-73

1 Classes (Data Types)

1-74

MATLAB creates and assigns values to the three specified fields, and also
creates an unspecified field s (2) . b, setting its value to the empty array ([]).
This ensures that the fields of s(1) and s(2) are the same in number and
name. This is called scalar expansion:

MATLAB also automatically keeps field naming and count the same for all
elements when you use the struct function to create a struct array. In this
case, however, field b of elements s(2) and s(3) are set to the value specified
for s(1).b, which is 10:

s = struct('a', {5, 15, 25}, 'b', 10);
[vl v2 v3] = s.b;

[vli v2 v3]
ans =
10 10 10

Note The number of field values expressed in curly braces must be the same
for each field name with the exception of fields that are scalar, in which case
you do not need the curly braces.

This example calls struct with three values for field a and two values for
field b, causing the command to generate an error:

s = struct('a', {5, 15, 25}, 'b', {10, 15});

??? Error using ==> struct

Array dimensions of input 4 must match those of
input 2 or be scalar.

Preallocating Memory for the Array

MATLAB stores the field names and any overhead information required by
a struct array in contiguous memory. If you increase the number of fields

used by a struct array over time, even if this happens just by increasing the
dimensions of the array, MATLAB uses up more of this contiguous piece of

Structures

memory for field name storage. This can eventually lead to “out of memory”
errors.

If you can roughly estimate the number of fields and the number of struct
array elements at the time you create a struct array, you can preallocate
the necessary space in memory and help to avoid this type of problem. See
the documentation on Data Structures and Memory to help you make this
estimate.

Note Unlike the field name and internal header information of a struct
array, the memory consumed by the data stored in a struct array is not
contiguous, nor can it be preallocated. While preallocating memory can help
avoid memory problems when increasing the dimensions of a struct array, it
does not protect against shortages in memory due to the amount of data you
store in the array. Even with preallocated struct (and cell) arrays, you need to
take precautions against using more memory than is available.

How to Preallocate Memory. Methods for preallocating and initializing a
struct array are as follows:

® To allocate memory for a0 25-by-50 struct array with fields a, b, and ¢ and
initialize the entire array to [], use either of the following two methods:

S(25,50) = struct('a’, [], 'b", [1, "¢'5[1);
$(25,50).a = []; S(25,50).b = []; S(25,50).c = [];

® To allocate memory for the same struct array, initializing the fields of one
element as specified, and copying that element to all elements of the struct
array S, use either of the following two methods:

S(1:25,1:50) = struct('a', 20, 'b', 30, 'c', 40);
S = repmat(struct('a', 20, 'b', 30, 'c', 40), [25 50]);

After the memory has been allocated, you can begin to construct the array by
assigning data to it.

1-75

1 Classes (Data Types)

1-76

Structure Fields

This section describes how to name the fields you create, how to find out
what fields a structure contains, how to create and assign field names at
run time, and the functions that MATLAB provides to help work with the
fields of a structure.

Guidelines for Naming Structure Fields

A field name is just a character string. MATLAB field names must follow the
same rules as standard MATLAB variables:

1 Structure field names must begin with a letter, and can contain additional
letters, digits, or underscore characters.

2 It is advisable to keep field names to a maximum of N characters, where N
1s the number returned by the function namelengthmax. MATLAB accepts
longer names, but only uses the first N characters and ignores the rest.

3 MATLAB distinguishes between uppercase and lowercase characters. The
field name S.income is not the same as the name S.Income

4 In most cases, you should refrain from using the names of functions or
other active variables as field names.

Listing the Fields of a Structure

To access the contents of a struct array, you first need to find out what the
names of its fields are. The fieldnames function returns a cell array of
strings listing all fields belonging to the structure array. The fields appear in
the order in which they were created.

Here is a structure with four fields:

USPres.name = 'Franklin D. Roosevelt';
USPres.vp(1) {'John Garner'};
USPres.vp(2) {'Henry Wallace'};
USPres.vp(3) = {'Harry S. Truman'};
USPres.term = [1933, 1945];
USPres.party = 'Democratic';

Structures

The fieldnames function returns the names of each field of USPres in a
4-by-1 cell array of strings:

presFields = fieldnames(USPres)
ans =

"name'’

'vp'

"term'

'party’

Another means of acquiring fieldnames is to just enter the name of the
structure. For a scalar structure, this returns more than just the fieldnames;
it also displays the value of each field:

USPres =
name: 'Franklin D. Roosevelt'
vp: {'dJohn Garner' 'Henry Wallace' 'Harry S. Truman'}
term: [1933 1945]
party: 'Democratic'

Arranging Fieldnames Alphabetically

By default, MATLAB orders the fieldnames of a structure according to the
order in which they were created. The orderfields function returns a new
struct array that is just like the original, except that the order of the field
names is alphabetical. If you assign the output of orderfields back to the
input structure, it effectively modifies the field ordering of the input structure:

USPres = orderfields(USPres);

Creating Field Names Dynamically

Another way to give a name to a structure field is to derive the name at the
time MATLAB executes your code. First, establish a variable to represent the
field name of your structure. Then, at run time, MATLAB uses the current
value of this variable as the field name. This is called a dynamic field name.
You can only use dynamic field names when you create your struct array
using individual assignment to fields.

The syntax for creating a field name dynamically is

structName. (dynamicExpression) = fieldValue;

1-77

1 Classes (Data Types)

1-78

The term dynamicExpression is any MATLAB expression that returns a
character or string. For example, in the following statement, the datestr
function returns the string Nov2708 which then becomes a field name in the

price structure. The dot-parentheses .

() syntax tells MATLAB that the

string value returned by datestr(now, 'mmmddyy') is a field name for the

structure:

price. (datestr(now, 'mmmddyy')) = 89.99;

Examining the field names for the price structure shows the Nov2708 field

just added:

fieldnames(price)
ans =
"Nov2708'

Functions That Operate on Fields

The following functions are commonly used with the field names of structures.
For more information on these functions, consult the MATLAB Function

Reference documentation:

Function Description Return Value
fieldnames Get all field names of specified | Cell array of strings listing fields of input
structure. structure in the order in which they were
assigned to the structure.
getfield Get contents of the specified Current value assigned to specified field.
field.
isfield Determine if input is a structure | true if the field is a structure field.
field. Otherwise, false.
orderfields Order fields of a structure Copy of the input structure with fields
array. ordered alphabetically.
rmfield Remove structure field. Input structure with specified field
removed.
setfield Set structure field contents, Input structure with specified field set to

returning the modified
structure.

new value.

Structures

To set the value of a structure field, you can either assign it directly, or use
the setfield function. Likewise, you can obtain the value of a field as shown
in the section “Returning Data from a Struct Array” on page 1-82 or by using
the getfield function.

Concatenating Structures

You can concatenate arrays of structures and arrays of structure fields as
explained below.

Concatenating Structure Arrays
When concatenating structure arrays, all of the following must be true:

e All of the arrays must be structures.

e All of the arrays must have the same number of elements along the
dimension being joined. For example, you can concatenate a 3-by-5 array
of structures with a 9-by-5 array of structures, but you can only do so
vertically. See “Keeping Matrices Rectangular”.

e All of the arrays must have the same number of fields and the same field
names.

¢ Like-named fields of the arrays being concatenated do not have to belong

to the same class, or have the same dimensions

Create three struct arrays S1, S2, and S3, each having three fields F1, F2,
and F3:

rand('state', 0); % Initialize random number generator
S1 = struct('F1', 'ID_1', 'F2', 2:3:14, 'F3', rand(3,3));
$2 = struct('F1', 'ID_3', 'F2', -2:3:10, 'F3', rand(3,2));
S3 = struct('F1', 'ID_4', 'F2', -3:2:5, 'F3', rand(3,1));

Concatenate the three structures to create a 1-by-3 array of structures:

T1 = [S1 S2 S3]

T1 =

1x3 struct array with fields:
F1
F2

1-79

1 Classes (Data Types)

F3

This creates a single structure T1 having the same fields as S1, S2, and
S3. Each field in the new structure T1 contains the data from all of the
concatenated fields:

T1.F3
ans =
0.9501 0.4860 0.4565
0.2311 0.8913 0.0185
0.6068 0.7621 0.8214
ans =
0.4447 0.9218
0.6154 0.7382
0.7919 0.1763
ans =
0.4057
0.9355
0.9169

Concatenating Structure Fields

You concatenate structure field arrays following the same guidelines used
when concatenating any other types of arrays.

Indexing into a Struct Array

This section describes how to index into the elements of a struct array, and
any arrays that are contained within a struct field.

Basic Struct and Field Indexing

The most general indexing with which to store data into or retrieve data
from a struct array is

structName (sRows, sCols, ...).fieldName(fRows, fCols, ...)

If the structure is scalar, then you can omit the structure indexing as shown
here:

structName.fieldName (fRows, fCols, ...)

1-80

Structures

Indexing to Inner Levels of the Struct Array

The fields of a structure contain arrays of standard MATLAB data types.
These arrays use the indexing syntax appropriate to the class of the array.
The table below shows examples of statements that use a combination of

struct and cell array indexing:

Array Element

Access an element of an array A, where A is a
field of structure S.

Syntax to Use
S(3,15).A(5,25)

Access an element of cell array A, where A is a
field of structure S.

S(3,15).A{5,20}

Access an element of array B, where B is a field
of struct array A, and A is a field of struct array
S.

S(3,15).A(5,20).B(50,5)

Access an element of array B, where B is a field
of a structure that resides in cell array A, and A
is a field of structure S.

S(3,15).A{5,20}.B(50,5)

Access an element of cell array B, where B is a
field of structure A, and A is a field of structure
S.

S(3,15).A.B{5,20}

Indexing Tips

Some techniques that could help you in determining how to format struct

array indexing are:

¢ Use the whos function to tell you exactly what the class and size of the
variable is that you are dealing with. Combining this information and the
standard indexing rules should enable you to find the appropriate syntax to

use to get to the desired piece of data.

¢ Enter only the right side of the assignment statement, effectively assigning
to the ans variable. By not confining MATLAB to fit its return data into a
possibly incompatible data structure, you allow the software to decide the
type and size of array needed to contain this data. In so doing, the output
illustrates or implies the type of indexing required.

1-81

1 Classes (Data Types)

1-82

® There are instances in which you can enter a perfectly good indexing
statement that will fail just the same. The reason for this failure is that the
variable you are attempting to assign to already exists in the workspace.
This variable represents an array that is incompatible with your current
assignment statement.

If you are assigning to a variable that is already in use, try clearing the
variable from the MATLAB workspace, and then reentering your indexing
statement.

® You can index into a nested array in stages rather than all at once.
Consider breaking down this indexing expression:

S(5,3).A(4,7).B(:,4)

into the following:

X = §(5,3).A; % X is a struct array
y = x(4,7).B; % y is also a struct array
z = y(:,4) % z is a standard array

Returning Data from a Struct Array

The following table shows a number of different ways of returning data from a
struct array. The variable s is a 3-by-4 structure with fields a, b, and ¢c. Each
of these fields 1s a 2-by-5 array of class double:

Values To Be Acquired MATLAB Data Structure Returned
Statement

The entire struct array s S 3x4 struct array with fields
a, b, and c.

The entire struct array s, as a vector s(:) 12x1 struct array with
fields a, b, and c.

Selected elements of struct s $(2:3,1:3) 2x3 struct array with fields
a, b, and c.

The full array a in selected element of s. s(2,3).a 2x5 array of double.

The full array a in multiple elements of s. s(2:3,3:4).a 4-1tem comma-separated

list of 2x5 double.

Structures

Values To Be Acquired MATLAB Data Structure Returned
Statement
The full array a in all elements of s. s.a 12-item comma-separated

list of 2x5 double.

Selected elements of a in one element of s.
Multiple elements of s are not allowed with

this syntax.

s(3,4).a(2,3:5)

1x3 array of double.

The first three of these indexing expressions provide no access to individual
elements of the field arrays. You could use these expressions to copy,
rearrange, or delete parts of the structure.

Assigning Struct Array Values to a Comma-Separated List

Accessing a single value from a field in a struct array is no different from
accessing one of the elements of any other MATLAB data type. You specify
the appropriate subscripts for the struct and field arrays and MATLAB
returns the value stored at that location in the array.

Accessing multiple elements, however, can be quite different. Multiple
elements of a struct array cannot be assigned to a single variable because they
do not necessarily belong to the same class. Instead, MATLAB assigns values
from a struct array to a series of separate variables called a comma-separated

list.

Create a struct S, with one field, A:

S:

struct('A',

{5,

"Anne', @myfun,

1:5});

Examining field A for all elements of S returns a comma-separated list:

S.A
ans

ans

ans

ans

1-83

1 Classes (Data Types)

1 2 3 4 5

The potential problem with this type of output is that MATLAB overwrites
the ans variable for each value returned. If you only want to display these
values, then this command should suit your purpose. The next section shows
how to assign to variables that you can reuse.

Assigning Struct Values to Separate Variables

If you were to assign multiple elements of a struct array to just one variable,
MATLAB uses that variable to return the first value, but is unable to return
all values of the array:

X = 8§.a
X=

If you know how many values there are in the struct array elements you are
trying to access, then you can provide that many outputs in the command, as
shown here:

[vli v2 v3 v4] = s.a

vl =
5
v2 =
Anne
v3 =
@myfun
v4 =
1 2 3 4 5

As in the previous example, this is a comma-separated list. Each return
variable is of the class and size of the struct array element assigned to it:

whos vi
Name Size Bytes Class Attributes
vi 1x1 8 double

whos v2

1-84

Structures

Name Size Bytes Class Attributes

v2 1x4 8 char

Assigning Struct Array Values to a Cell Array

You can assign the values of the struct array to a cell array using the
following syntax:

[x{1:4}] = s.a
X:
[5] "Anne’ @myfun [1x6 double]
whos x
Name Size Bytes Class Attributes
X 1x4 320 cell

Preallocating the cell array to a certain size and shape gives you control over
how MATLAB returns the output:

x1 = cell(4,1); % Make x1 a 4-by-1 array
[x1{:}] = s.a
x1 =

[5]

"Anne'’

@myfun

[1x6 double]
x2 = cell(2,2); % Make x2 a 2-by-2 array
[x2{:}] = s.a
X2 =

[5] @myfun

"Anne'’ [1x6 double]
x3 = cell(1,3); % Make x3 a 3-element array
[x3{:}] = s.a
X3 =

[5] "Anne'’ @myfun

1-85

1 Classes (Data Types)

Another way to do this is to use the following statements:

[x1{1:4,1}] =
[x2{1:2,1:2}]
[x3{1:3}] = s.

(7]

.a
S.a

Q

Using Structures with Functions

This section describes how to apply a function to data contained within a
structure field using the structfun function, and also how to pass arguments
to and from a function using structures.

Applying a Function to the Fields of a Structure

Use the structfun function to execute a function on each field of a scalar
struct array. This example executes an anonymous function on a structure
having fields that name the days of a week. The anonymous function,
@(x)x(1:3), shortens each string to its first three characters. The function
reference page for structfun explains the use of the UniformOutput option:

days.f1 = 'Sunday'; days.f2 = 'Monday';
days.f3 = 'Tuesday'; days.f4 = 'Wednesday';
days.f5 = 'Thursday'; days.f6 = 'Friday';
days.f7 = 'Saturday';

shortNames = structfun(@(x)x(1:3), days, 'UniformOutput', false)

shortNames =
f1: 'Sun'
f2: 'Mon'
f3: 'Tue'
f4: 'Wed'
f5: 'Thu'
f6: 'Fri'
f7: 'Sat'

See the reference page for structfun for additional help on using this
function.

1-86

Structures

Passing Arguments in a Structure

A simple and easily maintainable way to pass arguments to or from a function
is to package them in a structure, and then pass the entire structure to the
function. This example passes information pertaining to four United States
presidents to the function showPresInfo using only one input argument. You
can also use struct arrays to return data from a function call.

Store data on the presidents in a 1-by-30 struct array:

o°

27th US President
Term
Vice President

USPres(27).name = 'William Howard Taft';
USPres(27).term = [1909, 1913];
USPres(27).vp = 'dames S. Sherman';

o°

o°

USPres(28) .name = 'Woodrow Wilson'; % 28th
USPres(28).term = [1913, 1921];

USPres(28).vp = 'Thomas R. Marshall';
USPres(29).name = 'Warren G. Harding'; % 29th
USPres(29).term = [1921, 1923];

USPres(29).vp = 'Calvin Coolidge';
USPres(30).name = 'Calvin Coolidge'; % 30th

USPres(30).term = [1923, 1929];
USPres(30).vp = 'Charles Dawes';

Write a program to display the information passed in:
function passFullStructArray(number, info)

% Describe the INFO input.
[dim1,dim2] = size(info); typ = class(info);
fprintf('\nInput 2 is a %d-by-%d %s array.\n',

dim1, dim2, typ);
% Show the result.
fprintf('\nThe %dth element of the struct contains:\n', number)

info(number)

Call the program, passing the entire struct array:

1-87

1 Classes (Data Types)

1-88

passFullStructArray(29, USPres)
Input 2 is a 1-by-30 struct array.

The 29th element of the struct contains:
ans =
name: 'Warren G. Harding'
term: [1921 1923]
vp: 'Calvin Coolidge'

Passing Selected Fields in a Structure

You can also pass selected fields of a structure in a function call. This example
passes 4 elements of the vp field of the USPres struct array in the form of a
comma-separated list. In this case, the function being called, showVPInfo,
receives these strings as four separate input arguments:

The value passed to this function is a list of four separate items:

USPres(27:30) .vp;
ans =

James S. Sherman
ans =

Thomas R. Marshall
ans =

Calvin Coolidge
ans =

Charles Dawes

Write a program that displays the name of a selected Vice President. Use the
varargin function to accept and unpack the four separate input arguments
generated by the comma-separated list, USPres(27:30) .vp:

function passPartialStructArray(number, varargin)

% Describe the VARARGIN input.

[dim1,dim2] = size(varargin); typ = class(varargin);

fprintf('\nInput 2 is a %d-by-%d %s array, VARARGIN.\n',
dimi, dim2, typ);

% Show the result

Structures

str = ['\nThe Vice President who served with ',
"the %dth US President was %s\n'];

n = number - 26;

fprintf(str, number, varargin{n})

Call the program, passing a 4-element comma-separated list, which is
internally converted to the 1-by-4 VARARGIN cell array:

passPartialStructArray (28, USPres(27:30).vp)
Input 2 is a 1-by-4 cell array, VARARGIN.

The Vice President who served with the 28th US President was
Thomas R. Marshall

Converting Between Struct Array and Cell Array

The struct2cell function converts a structure array to a cell array. The
statement

c = struct2cell(s)
converts an m-by-n structure s that has p fields into a p-by-m-by-n cell array c:

The cell2struct function converts a cell array to a struct array. The
statement

s = cell2struct(c,f,d)

converts a cell array c into a struct array s having the fields named in f and
based on the d axis of the input cell array.

Conversion Example

This example converts a 1-by-2 struct array USPres_Struct with four
fields to a 4-by-1-by-2 cell array USPres_Cell, and then back to a structure
USPres_Struct2 that is equal to the original.

Create the original structure:

USPresStruct = struct(
'name ',

1-89

1 Classes (Data Types)

{'Franklin D. Roosevelt', 'Harry S. Truman'},
'party’,

{'Democratic', 'Democratic'},
"term',

{{1933, 1945}, {1945, 1953}},
‘vp',

{{'Jdohn Garner'; 'Henry Wallace'; 'Harry S. Truman'},
{'Alben Barkley'}});

USPresStruct(1).name = 'Franklin D. Roosevelt';
USPres_s1(1).party = 'Democratic';
USPres_s1(1).term = {1933, 1945};
USPres_s1(1).vp =
{'Jdohn Garner';'Henry Wallace';'Harry S. Truman'};

USPresStruct = struct('name', 'Franklin D. Roosevelt',
'party', 'Democratic', ‘'term', {1 2 3}, 'vp',
{'John Garner' 'Henry Wallace' 'Harry S. Truman'})

USPres_s1(2).name = 'Harry S. Truman';
USPres_s1(2).party = 'Democratic';
USPres_s1(2).term = {1945, 1953};
USPres_s1(2).vp = 'Alben Barkley';
whos USPres_s1
Name Size Bytes Class Attributes

USPres_s1 1x2 1400 struct

Convert the struct array to a cell array:

USPresCell = struct2cell(USPresStruct);
whos USPresCell
Name Size Bytes Class Attributes

USPresCell 4x1x2 1208 cell

1-90

Structures

USPres_c1 = struct2cell(USPres_s1);
whos USPres_cf1
Name Size Bytes Class Attributes

USPres_c1 4x1x2 1144 cell

Convert back to a struct array and compare it with the original:

USPres_s2 = cell2struct(USPres_c1,
{'name', 'party', 'term','vp'}, 1);
whos USPres_s2
Name Size Bytes Class Attributes

USPres_s2 1x2 1400 struct

isequal (USPresStruct, USPres_Struct2)
ans =
1

Organizing Data in Structure Arrays

The key to organizing structure arrays is to decide how you want to access
subsets of the information. This, in turn, determines how you build the array
that holds the structures, and how you break up the structure fields.

For example, consider a 128-by-128 RGB image stored in three separate
arrays; RED, GREEN, and BLUE.

1-91

1 Classes (Data Types)

1-92

Red intensity
vohes

O o o oo oo oo

. BBd
L8285
101

812
.398
.T13
. 328
.133

. |o.sB9 0.708 0. 118
Bleintensty |5 s3s o0 s32 o sss
vakmes 0.314 0.265 0,159
0.553 0.633 0,528
0.441 0.465 0,512
0.398 0.401 0,421
. |o.342 0.547 0.515 0.8186 12
Greenintensty | 5 414 0.300 0.205 0. 528 g1
values D.523 0.428 0.742 0.929 128
0.214 0.604 0.918 0. 344
0.100 0.121 0.113 0.125
0.288 0.187 0.204 0,175
0.112 0.966 0.234 0.432 BD 0531
0.7ES 0.128 0.853 0.521 per o910
1.000 0.9B5 0.761 0.598 PEs 0. 726
0.455 0.783 0.224 0.395
0.021 0.500 0.311 0.123
1.000 1.000 0.B67 0,051
1.000 0.945 0.998 0.893
0.990 0.8441 1.000 0.876
0.902 0.867 0.834 0.798

Structures

There are at least two ways you can organize such data into a structure array:
plane organization and element-by-element organization.

Plane organization Hement-by-element organzation

x
— @

1

9.0 048 0% 0

B(1,1) B(1,2) B(1,3)

g [RIMAERAELEE

Bi2,1) Bi2,2) Bi2,3)

L & L & 0,532 - b ER=E=]

1-hy-1 stuucture army where each field isa 128-by-128 ammay
128-hy-128 stucture army where each field & a single data element

Plane Organization

In the plane organization, shown to the left in the figure above, each field of
the structure is an entire plane of the image. You can create this structure

using
A.r = RED;
A.g = GREEN;
A.b = BLUE;

This approach allows you to easily extract entire image planes for display,
filtering, or other tasks that work on the entire image at once. To access
the entire red plane, for example, use

redPlane = A.r;

1-93

1 Classes (Data Types)

1-94

Plane organization has the additional advantage of being extensible to
multiple images in this case. If you have a number of images, you can store
them as A(2), A(3), and so on, each containing an entire image.

The disadvantage of plane organization is evident when you need to access
subsets of the planes. To access a subimage, for example, you need to access
each field separately:

redSub = A.r(2:12,13:30);
greenSub = A.g(2:12,13:30);
blueSub = A.b(2:12,13:30);

Element-by-Element Organization

The element-by-element organization, shown to the right in the previous
figure, has the advantage of allowing easy access to subsets of data. However,
it has the disadvantage of being very memory-intensive. To set up the data in
this organization, use

for m = 1:size(RED,1)
for n = 1:size(RED,2)
B(m,n).r = RED(m,n);
B(m,n).g GREEN(m,n);
B(m,n).b BLUE(m,n);
end
end

With element-by-element organization, you can access a subset of data with a
single statement:

Bsub = B(1:10,1:10);

To access an entire plane of the image using the element-by-element method,
however, requires a loop:

redPlane = zeros(128, 128);
for k = 1:(128 * 128)

redPlane(k) = B(k).r;
end

Structures

Element-by-element organization is not the best structure array choice for
most image processing applications. However, it can be the best for other
applications wherein you routinely need to access corresponding subsets of
structure fields. The example in the following section demonstrates this type
of application.

Example — A Simple Database
Consider organizing a simple database.

A Plane organization B Element-by-¢lement arganizatian
| nome —1 Fin EMI
: Bi1) Bi2) B(3)
= i
| oddress | TEERE
o o - s [T
oot == Lo =] Lomout (=
-.ﬂmﬂUﬂT—g:g o
Bi1).name = 'Ann Jones';
B(1).address = '80 Park s5t.';
Bi1).amoumt = 12.5;
s - s \ B(2).name = 'Dan Smith';
h'n?E:n 5::::?Et[??n dones’, .- Bf2).address = 'S5 Lake Ave.';
A.address = strvcati'80 Park 5t.', ... Hi2).amount = B1.23;

'S Lake Ave.',...);
A.amourt = [12.5;

B1.29; 30; ...

1

Each of the possible organizations has advantages depending on how you
want to access the data. Typically, your data does not dictate the organization
scheme you choose. Rather, you must consider how you want to access and
operate on the data.

Advantages of Using Plane Organization. Plane organization makes it

easier to operate on all field values at once. If, for example, you want to find
the average of all the values in the amount field,

1-95

1 Classes (Data Types)

1-96

e Using plane organization, you could use the following statement:

avg = mean(A.amount);

¢ Using element-by-element organization, you need to remember to
enclose the amount expression in brackets:

avg = mean([B.amount]);

Advantages of Using Element-By-Element Organization.
Element-by-element organization makes it easier to access all the information
related to a single client. Consider a program file, client.m, which displays
the name and address of a given client on screen.

Using plane organization, the client function appears as:

function client(name,address)
disp(name)
disp(address)

Call this function as follows:

client(A.name(2,:), A.address(2,:))

Using element-by-element organization, both the function and function
call require less code. The client function is:

function client(B)
disp(B)

To call the function, use:
client(B(2))

Element-by-element organization also makes it easier to expand the string
array fields. If you do not know the maximum string length ahead of time
for plane organization, you might need to frequently recreate the name or
address field to accommodate longer strings.

Structures

Operator Summary

This section summarizes the following types of operators that work with
structures:

e “Operators That Construct the Struct Array” on page 1-97
e “Operators That Concatenate Structures” on page 1-97

e “Operators Used for Struct Array Indexing ” on page 1-97

Operators That Construct the Struct Array

Syntax Description
S = struct('f1', x, Builds a 1-by-1 struct array S with fields 1, f2, and 3, which
'f2', y, 'f3', z) can contain data of unlike types. Field f1 contains the value of x,
field f2 contains the value of y, etc.
S = struct('f1', {x, Builds a 1-by-3 struct array S where each element of S has one
Yy, z}) field f1, which can contain data of unlike types. S(1) .f1 contains
the value of x, S(2).f1 contains the value of y, etc.
Operators That Concatenate Structures
Syntax Description
S3 = [S1 S2] Concatenates struct arrays S1 and S2 into a two-element struct
array.
S3 = [S1.F; S2.F] Concatenates the fields of struct arrays S1 and S2 into an array
of the same data type. S3 is not necessarily a struct.
Operators Used for Struct Array Indexing
Syntax Description
X = S(s) Returns the elements of struct array S specified by subscripts s.
X = S(s).F Returns all elements of field F for elements of S specified by s.

1-97

1 Classes (Data Types)

Syntax Description

X = S(s).F(f) Returns selected elements of field F for structure elements specified
by subscript s.

X = S1(s,).S2(s,).F Returns the contents of a nested struct array. Multiple elements of
S1 are not allowed with this syntax.

X = S(s).F{c} Returns the specified elements of a cell array that reside in a field of
struct array S.

Function Summary

This section summarizes the following types of functions that work with
structures:

“Functions Related to Constructing the Struct Array” on page 1-98

“Functions Related to the Type of the Struct Array” on page 1-99

“Functions Related to Struct Fields” on page 1-99

“Functions Related to Applying Functions to a Struct Array” on page 1-100

Functions Related to Constructing the Struct Array

Function Description

cat Concatenate arrays along specified dimension.

horzcat Concatenate arrays horizontally.

length Length of vector.

ndims Number of array dimensions.

numel Number of elements in array or subscripted array expression.
repmat Replicate and tile array.

reshape Reshape array.

size Size of array.

1-98

Structures

Function Description
struct Create structure array.
vertcat Concatenate arrays vertically.
Functions Related to the Type of the Struct Array
Function Description
cell2struct Convert cell array to structure array.
class Create object or return class of object.
isstruct Determine whether input is structure array.
struct2cell Convert structure to cell array.
whos List variables in workspace.
Functions Related to Struct Fields
Function Description
fieldnames Get all field names of specified structure.
getfield Get contents of the specified field.
isempty Determine whether array is empty.
isfield Determine if input is a structure field.
orderfields Order fields of a structure array.
rmfield Remove structure field.
setfield Set structure field contents, returning the modified structure.

Dynamic Fieldnames

Generate field name strings at run time.

1-99

1 Classes (Data Types)

Functions Related to Applying Functions to a Struct Array

Function Description

structfun Apply function to each field of scalar structure.
varargin Variable length input argument list.
varargout Variable length output argument list.

1-100

Cell Arrays

Cell Arrays

In this section...
“What Is a Cell Array?” on page 1-101

“Cell Array Operations” on page 1-103

“Creating a Cell Array” on page 1-103

“Concatenating Cell Arrays” on page 1-108

“Indexing into a Cell Array” on page 1-109

“Assigning Values to a Cell Array” on page 1-113

“Returning Data from a Cell Array” on page 1-114

“Using Cell Arrays with Functions” on page 1-118

“Converting Between Cell Array and Struct Array” on page 1-121
“Operator Summary” on page 1-122

“Function Summary” on page 1-124

What Is a Cell Array?

A cell array is a collection of containers called cells in which you can store
different types of data. The figure shown below represents a 2-by-3 cell array.
The cells in row one hold an array of unsigned integers, an array of strings,
and an array of complex numbers. Row two holds three other types of arrays,
the last being a second cell array nested in the outer one:

1-101

1 Classes (Data Types)

1-102

cellll cell 1.2 cell 1.3
'Anne Smith'
3 4 =z ‘g/mz/e4 f .25+3L B-161
8 ¥ & 'Class IT '
B 5 1 34+51 7+.921
'abs. 1 !
TObs. 2 '
cell 2,1 cell 2,2 cell 2.3
et 4 2
T2 -14 B 135
1.43 2.96 7.83 5.67 B 345
4 21 52 16 3
7.3 2.5 . B
140 .02 + BL

Each cell of a cell array contains some type of MATLAB array. The data in
this array can belong to any one MATLAB or user-defined class, and can have
any valid array dimensions; this includes 1-by-1 (a scalar array), or having one
or more dimension equal to zero (an empty array). A second cell of the same
array can belong to an entirely different class, and can also have different
dimensions than the first. The capability to store arrays of mixed classes and
sizes is the most significant feature of a cell array. Another common use of
cell arrays is to store character strings that are of unequal length. A cell array
that is used for this purpose is called a cell array of strings.

Like all MATLAB arrays, cell arrays must be rectangular in shape. That is,
the length of all rows must be the same, the length of all columns the same,
and so on for every dimension of the array.

In many respects, cell arrays are quite similar to struct arrays. See
“Comparing Struct Arrays with Cell Arrays” on page 1-69 for help in deciding
which of these two classes best suits the needs of your applications.

Cell Arrays

Cell Array Operations

This table shows the operators used in creating, concatenating, and indexing
into the cells of a cell array.

Operation Syntax Description
Creating C = {A B D | Builds a cell array C that can contain data of unlike types in A,
E} B, D, and E.
Concatenatin@d = {C1 C2} | Concatenates cell arrays C1 and C2 into a two-element cell array
C3 such that C3{1} = C1 and C3{2} = C2.
C3 = [C1 C2] | Concatenates the contents of cell arrays C1 and C2, assuming that
the dimensions of these arrays are compatible.
Indexing X = C(s) Returns the cells of array C that are specified by subscripts s.
X = C{s} Returns the contents of the cells of C that are specified by
subscripts s.
X = C{s}(t) | References one or more elements of an array that resides within

a cell. Subscript s selects the cell, and subscript t selects the
array element(s).

For more information on these operations, see “Creating a Cell Array” on page
1-103, “Concatenating Cell Arrays” on page 1-108, and “Indexing into a Cell
Array” on page 1-109, respectively.

Creating a Cell Array

® “Nesting One Cell Array in Another” on page 1-104

e “Creating Cell Arrays One Cell At a Time” on page 1-105

® “Alternative Assignment Syntax” on page 1-107

e “Preallocating Memory for the Array” on page 1-107

Creating cell arrays in MATLAB is similar to creating arrays of other
MATLAB classes like double, char, and so on. The main difference is that,
when creating a cell array, you enclose the array contents or indices with curly
braces { } instead of square brackets [1. The curly braces are cell array

1-103

1 Classes (Data Types)

1-104

constructors, just as square brackets are numeric array constructors. Use
commas or spaces to separate elements and semicolons to terminate each row.

For example, to create a 2-by-2 cell array A, type
A={[143;058; 729], 'Anne Smith'; 3+7i, -pi:pi/4:pi};

This results in the array shown below.

cellll cell 12
14 13
n & &g ‘Anng Smith'
T2 4
cell 2,1 cell 2,2
7L [-2.1d4__.3._14]

Note The curly braces operator creates two-dimensional matrices only,
(including 0-by-0, 1-by-1, and 1-by-n matrices). To create cell arrays of more
than two dimensions, see “Creating Multidimensional Arrays”.

Nesting One Cell Array in Another

To nest one cell array within another, enclose both inner and outer cell
arrays with the curly braces { }. The example shown here nests a cell array
of vital signs inside a cell array of a person’s medical record. (Defining the
columns with a header 1is not usually required, and is just used here to make
the example simpler):

header = {'Name', 'Age', 'Pulse/Temp/BP'};
records(1,:) = {'Kelly', 49, {58, 98.3, [103, 72]}};

header, records

header =

"Name' "Age’ "Pulse/Temp/BP'
records =

'Kelly' [49] {1x3 cell}

Cell Arrays

It is often easier to build a nested cell array in steps. The example below
creates the inner cell array, vitalsigns, first. The second statement then
uses the vitalsigns array in creating the outer cell array, records:

vitalsigns = {60, 98.4, [105, 75]};

records(1,:) = {'Kelly', 49, vitalsigns}

record =
"Name' "Age’ 'Pulse/Temp/BP'
'Kelly' [49] {1x3 cell}

Verify the new values in the records cell array:

fprintf('pulse: %d temp: %3.1f bp: %d/%d\n',
records{3}{:})
pulse: 60 temp: 98.4 bp: 105/75

Creating Cell Arrays One Cell At a Time

You also can create a cell array one cell at a time by using multiple assignment
statements. MATLAB expands the size of the cell array with each assignment
statement:

{[1 4 3; 05 8; 72 9]};
{'Anne Smith'};

= {8+471i};

{-pi:pi/4:pi};

>>> >

NN = =

l\)“—*l\)—*
|

If you assign data to a cell that is outside the dimensions of the current array,
MATLAB automatically expands the array to include the subscripts you
specify. It fills any intervening cells with empty matrices. For example, the
assignment below turns the 2-by-2 cell array A into a 3-by-3 cell array:

A(3,3) = {5};

1-105

1 Classes (Data Types)

1-106

cell 1,1 cell 1.2 cell 1,3
1 4 3
0o 5 B 'Anne smith' [1]
7 2 9
cell 2.1 cell 2,2 cell 2,3
371 [-3.d. .. 3. 10 [1]
celld 1 cell 3.2 cell 3.3
[1 [1 5

3-by-3 Cell Array

Note If you already have a numeric array of a given name, do not try to
create a cell array of the same name by assignment without first clearing the
numeric array. If you do not clear the numeric array, MATLAB assumes that
you are trying to mix cell and numeric syntaxes, and generates an error.
Similarly, MATLAB does not clear a cell array when you make a single
assignment to it. If any of the examples in this section give unexpected
results, clear the cell array from the workspace and try again.

Handling Unassigned Cells. To keep all dimensions of a cell array even,
MATLAB automatically fills in any unassigned cells as you build the cell
array. For example, if you have a cell array that consists of a row of three
elements, and you add one new cell to a second row, MATLAB adds two cells
to the new row to keep all rows at the same length. The values of these two
cells are set to the empty array []. This is called scalar expansion.

MATLAB handles other array types in a similar manner, except that it sets
unassigned elements to zero instead of the empty array. This example adds a
single element to a 1-by-3 array of type double, and then does the same to

a cell array:

A
A =

[2 4 6]; A(2,1) = 8

2 4 6

Cell Arrays

8 0 0

(]
I

{2 4 6}; C(2,1) = {8}

[2] [4] [6]
(8] [[1

Alternative Assignment Syntax

When assigning values to a cell array, either of the syntaxes shown below is
valid. You can use the braces on the right side of the equation, enclosing the
value being assigned, as shown here:

A(1,1) = {[1 4 3; 05 8; 7 2 9]1};
A(1,2 {'Anne Smith'};

You can also use them on the left side, enclosing the array subscripts:

A{1,1} = [1 43; 058; 72 9];
A{1,2} "Anne Smith';

Preallocating Memory for the Array

MATLAB stores internal information for a cell array in a contiguous segment
of memory called a header. If you increase the number of cells in a cell array
over time, the size of the header also grows, thus using more of this segment
in memory. This can eventually lead to “out of memory” errors.

If you can roughly estimate the dimensions of a cell array at the time you
create it, you can preallocate the necessary space in memory and help to
avoid this type of problem. See the documentation on Data Structures and
Memory to help you make this estimate.

1-107

1 Classes (Data Types)

1-108

Note Unlike the internal header information of a cell array, the memory
consumed by the data stored in a cell array is not contiguous, nor can it

be be preallocated. While preallocating memory can help avoid memory
problems when increasing the dimensions of a cell array, it does not protect
against shortages in memory due to the amount of data you store in the array.
Even with preallocated cell (and struct) arrays, you need to take precautions
against using more memory than is available.

How to Preallocate Memory. To allocate memory for a 25-by-50 cell array
and initialize the entire array to [], use either of the following two methods:

C = cell(25,50);
C{25,50} = [1];

After the memory has been allocated, you can begin to construct the array by
assigning data to it.

Concatenating Cell Arrays

There are two ways that you can create a new cell array from existing cell
arrays:

® Concatenate entire cell arrays to individual cells of the new array. For
example, join three cell arrays together to build a new cell array having
three elements, each containing a cell array. This method uses the curly
brace { } operator.

® Concatenate the contents of the cells into a new array. For example, join
cell arrays of size m-by-n1, m-by-n2, and m-by-n3 together to yield a new
cell array that is m-by- (n1+n2+n3) in size. This method uses the square
bracket [] operator.

Here is an example. First, create three 3-row cell arrays of different widths:

C1 = {'Aug' 'Sep'; '10' '17'; uint16(2004) uint16(2004)};
C2 = {'Dec' 'Jan' 'Feb'; '31' '2' '10';

uint16(2007) uint16(2008) uint16(2008)};
€3 = {'Jun'; '23'; uint16(2002)};

Cell Arrays

This creates arrays C1, C2, and C3:

C1 c2 C3
"Aug’ ‘Sep' 'Dec' ‘dan' 'Feb' ‘Jun'
I1OI I17I I31I I2I I10I I23I
[2004] [2004] [2007] [2008] [2008] [2002]

Use the curly brace operator to concatenate entire cell arrays, thus building
a 1-by-3 cell array from the three initial arrays. Each cell of this new array
holds its own cell array:

c4
c4

{C1 C2 C3}

{3x2 cell} {3x3 cell} {3x1 cell}

Now use the square bracket operator on the same combination of cell arrays.
This time MATLAB concatenates the contents of the cells together and
produces a 3-by-6 cell array:

C5 = [C1 C2 C3]

C5 =
"Aug’ 'Sep' 'Dec' ‘Jan' 'Feb' ‘Jun'
10" 17! 31 2" '10' ‘23"
[2004] [2004] [2007] [2008] [2008] [2002]

Note The notation {} denotes the empty cell array, just as [] denotes the
empty matrix for numeric arrays. You can use the empty cell array in any
cell array assignments.

Indexing into a Cell Array

When working with cell arrays, you have a choice of selecting entire cells of
an array to work with, or the contents of those cells. The first method is cell
indexing, the second is content indexing:

¢ (Cell indexing enables you to work with whole cells of an array. You can
access single or multiple cells within the array, but you cannot select
anything less than the complete cell. If you want to manipulate the cells of
an array without regard to the contents of those cells, use cell indexing.
This type of indexing is denoted by the parentheses operator ().

1-109

1 Classes (Data Types)

Use cell indexing to assign any set of cells to another variable, creating a
new cell array.

cell 1,1
3

cell 1,2
5

cell 1.3

a

cell 2,1
5

cell 2,2
]

cell 23
0

cell 3,1
4

cell 3,2

i

cell 3.3

2

cell 1.1 Jcell 1,2

] 0
|E=A[2:3,2:3:| > cell[31 [ceall 22
T 2

Creating a New Cell Array from an Existing One

¢ Content indexing gives you access to the contents of a cell. You can work
with individual elements of an array within a cell, but you can only do so
for one cell at a time. This indexing uses the curly brace operator { }.

Note The examples in this section focus on two-dimensional cell arrays. For
examples of higher-dimension cell arrays, see “Multidimensional Arrays”.

This example shows how to use cell and content indexing. Start out by
creating the following 3-by-3 cell array. The third element of each row is a
nested cell array:

header = {'Name',

'Age', 'Pulse/Temp/BP'};

records(1,:) = {'Kelly', 49, {58, 98.3, [103, 72]}};
{'Mark', 25, {60, 98.6, [105, 75]}};
{'Susan', 32, {71, 99.1, [110, 78]}};

records(2,:)
records(3,:)

Display the contents of the cell array. Defining the columns with a header is
not usually required, and is just used here to make the example simpler:

header

"Name'

records

'Kelly'
"Mark'
'Susan'

1-110

lAgel

[49]
[25]
[32]

'Pulse/Temp/BP'

{1x3 cell}
{1x3 cell}
{1x3 cell}

Cell Arrays

Use content indexing (curly braces) to change one of the names. Content
indexing gives you access to what is contained within the cells of the array:

records{3,1}="'Susanne’

records =
'Kelly' [49] {1x3 cell}
"Mark' [25] {1x3 cell}
'Susanne’ [32] {1x3 cell}

Use cell indexing (parentheses) to delete an entire row. (You delete part of a
cell array by assigning the empty array [] to it.) Cell indexing is appropriate

here because you do not need access to the contents of the row:

records(1,:) = []

records =
"Mark' [25] {1x3 cell}
'Susanne’ [32] {1x3 cell}

Indexing Into Inner Levels of the Cell Array

The cells of a cell array contain arrays of standard MATLAB data types.
These arrays use the indexing syntax appropriate to the class of the array.
The table below shows examples of statements that use a combination of

cell and struct array indexing:

Action

Required Indexing

Access an element of an array in a cell of cell
array C.

c{3,15}(5,25)

Access an element of array A, where A is a
field of a structure that resides in cell array C.

C{3,15}.A(5,20)

Access an element of an array that resides
in a nested cell array.

C{3,15}{5,20}(50,5)

Access an element of array B, where B is
a field of structure A, and A is a field of a
structure that resides in cell array C.

C{3,15}.A(5,20) .B(50,5)

Access an element of cell array B, where B is a
field of a structure that resides in cell array C.

c{3,15}.B{5,20}

1-111

1 Classes (Data Types)

1-112

Start this example by creating the records cell array taken from the example
in the previous section:

records(1,:)
records(2,:)
records(3,:)

{'Kelly', 49, {58, 98.3, [103, 72]}};
{'Mark', 25, {60, 98.6, [105, 75]}};
{'Susan', 32, {71, 99.1, [110, 78]}};

Display information from cells in the nested cell array. This requires two
adjacent expressions of content indexing, {2,3}{3}:

fprintf('Name: %s Systolic: %d Diastolic: %d\n',
records{2,1}, records{2,3}{3})
Name: Mark Systolic: 105 Diastolic: 75

Indexing Tips
You can index into a nested array in stages rather than all at once. Consider
breaking down this indexing expression

C{5,3}{4,7}(:,4)

into the following:

x = C{5,3}; % X is a cell array
y = x{4,7}; % y is also a cell array
z = y(:,4) % z is a standard array

See the section on “Indexing Tips” on page 1-81 in the documentation on
“Structures” for indexing tips that apply to both the cell and struct classes.

Using Map Obijects in Cell Array Indexing

If you want both the numeric indexing of cell arrays and the named containers
of structures, you can combine the two to some extent by implementing cell
array indexing with a MATLAB Map object (see “Map Containers” on page
1-150). The Map object provides a translation from a name string to a numeric
array index. This implementation has the advantage of using less memory
than a struct or cell array, but has the disadvantage of being slower.

The example shown here demonstrates the use of a Map object in locating
information in a cell array. Note that the names given to the keys of a Map

Cell Arrays

object do not have to adhere to the rules for variable names. In this example,
each of the key names contain a space character. This is not allowed in
variable names:

redSoxStats(57:60,1:4) = {

o°

% AtBat Runs Hits HR

o°

653, 118, 213, 17; % Pedroia
554, 98, 155, 9; % Ellsbury
538, 91, 168, 29; % Youkilis
423, 37, 93, 13}; % Varitek

m1 = containers.Map({'Dustin Pedroia', 'dacoby Ellsbury',
'Kevin Youkilis', ‘'dJason Varitek'}, {57,58,59,60});

m2 = containers.Map({'AtBat', 'Runs','Hits', 'HR'},

{1,2,3,4});
player = 'Dustin Pedroia';
fprintf(

“\n %S had %d At Bats and %d hits this season.\n',
player, redSoxStats{m1(player), m2('AtBat')},
redSoxStats{mi(player), m2('Hits')})

Dustin Pedroia had 653 At Bats and 213 hits in the 2008 season.

Assigning Values to a Cell Array

Use the curly brace { } operator on the right side of the statement to assign
values to a cell array:

To store four values in a 2-by-2 cell array, use
C = {magic(5), 'Hello'; uint8(100), [1:3:19]}
C =

[5x5 double] 'Hello'
[100] [1x7 double]

The following commands place the values into different cells of cell array C:

1-113

1 Classes (Data Types)

clear C
C(3,1:4) = {magic(5), 'Hello', uint8(100), [1:3:19]}
C:

[] [] [] []

[] [1 [] [1
[5x5 double] 'Hello' [100] [1x7 double]

clear C

C(2:3,5:6) = {magic(5), 'Hello'; uint8(100), [1:3:19]}

C:
[] [] [] [] [] []
[1 [1 [1 [] [5x5 double] [100]
[1] [1] [1] [] 'Hello' [1x7 double]

The deal function offers an alternative method of writing to the cell array.
These two statements produce the same result as the statements shown above
that use the curly braces { } operator:

[C{3,1:4}] = deal(magic(5), 'Hello', uint8(100), [1:3:19]);
[C{2:3,5:6}] = deal(magic(5), 'Hello', uint8(100), [1:3:19]);

Returning Data from a Cell Array
This section describes the syntax to use to have MATLAB return data from a

cell array, how to assign data from a cell array to a comma-separated list or
separate output variables, and also how to plot the contents of a cell array.

Obtaining Values from the Array

The following table shows a number of different ways of returning data from
a cell array. The variable c is a 3x4 cell array in which each cell contains

a 2x5 array of class double.

Values to be acquired MATLAB Data Structure Returned
Statement

Top level of cell array c c 3x4 cell array.

Top level of cell array c, as a vector c(:) 12x1 cell array.

Selected cells in cell array ¢ c(2:3,1:3) 2x3 cell array.

1-114

Cell Arrays

Values to be acquired MATLAB Data Structure Returned
Statement
Full contents of one cell in cell array c. c{2,3} 2x5 array of double.
Full contents of selected cells in cell array c. | c{2:3,3:4} 4-1tem comma-separated
list of 2x5 double.
Full contents of all cells in cell array c. c{:} 12-item comma-separated

list of 2x5 double.

Selected elements of one cell in cell array c.
You cannot use multiple elements of ¢ with
this syntax.

c{3,4}(2,3:5)

1x3 array of double.

The first three of these indexing expressions provide no access to individual
elements of the cells. You could use these expressions to copy, rearrange, or
delete parts of the cell array.

Assigning Cell Values to a Comma-Separated List

Accessing a single value from one cell of a cell array is no different from
accessing one of the elements of any other MATLAB data type. Accessing

multiple elements, however, can be quite different. Multiple elements of a cell
array cannot be assigned to a single variable because they do not necessarily
belong to the same class. Instead, MATLAB assigns values from a cell array
to a series of separate variables called a comma-separated list. Here is an
example of such a list:

First, create a 3-by-3 cell array called records:

records(1,:)
records(2,:)
records(3,:)

{'Kelly', 49, {58, 98.3, [103, 72]}};
{'Mark', 25, {60, 98.6, [105, 75]}};
{'Susan', 32, {71, 99.1, [110, 78]}};

Displaying one column of the cell array causes MATLAB to return three
separate values, each, in succession, assigned to the ans variable:

records{:,2}
ans =

49
ans =

1-115

1 Classes (Data Types)

1-116

25
ans =
32

The potential problem with this type of output is that MATLAB overwrites
the ans variable for each value returned. If you only want to display these
values, then this command should suit your purpose. The next section shows
how to assign to variables that you can reuse.

Assigning Cell Values to Separate Variables

If you were to assign multiple elements of a cell array to just one variable,
MATLAB uses that variable to return the first value, but is unable to return
all values of the array:

X
X=

records{:,2}
49
If you know how many values there are in the cell array elements you are

trying to access, then you can provide that many outputs in the command, as
shown here:

[vl v2 v3] = records{:,1}

vl =
Kelly
v2 =
Mark
v3 =
Susan

As in the previous example, this is a comma-separated list. As you can see
here, each return variable adopts the class and size of the cell array element
assigned to it:

whos vi
Name Size Bytes Class Attributes
vi 1x5 10 char

whos v2

Cell Arrays

Name Size Bytes Class Attributes

v2 1x4 8 char

Plotting the Cell Array

For a high-level graphical display of cell architecture, use the cellplot
function. Consider a 2-by-2 cell array containing two text strings, a matrix,
and a vector:

c{1,1} = '2-by-2';

c{1,2} = 'eigenvalues of eye(2)';
c{2,1} = eye(2);

c{2,2} = eig(eye(2));

The command cellplot(c) produces this figure.

Drorer Bl

File Edt View Insert Tools Desktop ‘Window Help £l

DEeEE K aaM® /¢ 08| 50

1-117

1 Classes (Data Types)

1-118

Using Cell Arrays with Functions

This section describes how to apply a function to data contained within a
cell array using the cellfun function, and also how to pass arguments to
and from a function using cell arrays.

Applying a Function to the Cells of a Cell Array

Use the cellfun function to run a function on each field of a scalar cell array.
This example runs an anonymous function on a cell array containing the days
of a week. The anonymous function, @(x)x(1:3), shortens each string to

its first three characters. The function reference page for cellfun explains
the use of the UniformOutput option:

days{1} = 'Sunday'; days{2} = 'Monday';
days{3} = 'Tuesday'; days{4} = 'Wednesday';
days{5} = 'Thursday'; days{6} = 'Friday';

days{7} = 'Saturday';

shortNames = cellfun(@(x)x(1:3), days, 'UniformOutput', false)
shortNames
'Sun' "Mon' 'Tue' 'Wed' '"Thu' "Fri' 'Sat’

See the reference page for cellfun for additional help on using this function.

Passing Variable Numbers of Arguments

You can call a function with variable numbers of input or output arguments
by using the terms varargin and varargout in the respective input and
output argument lists for that function. The function being called provides
access to these arguments using cell arrays named varargin and varargout.
See Passing Variable Numbers of Arguments in the documentation on
“Functions and Scripts”.

Passing Arguments in a Cell Array

A simple and easily maintainable way to pass arguments to or from a function
1s to package them in a cell array, and then pass the entire cell array to the
function. This example passes information pertaining to four United States
presidents to the function showPresInfo:

USPres = cell(30,3); % Allocate memory for the array.

Cell Arrays

USPres{27,1} = 'William Howard Taft';
USPres{27,2} = [1909, 1913];
USPres{27,3} = 'James S. Sherman';

o°

27th US President
Term
Vice President

o°

o°

USPres{28,1} = 'Woodrow Wilson'; % 28th
USPres{28,2} = [1913, 1921];

USPres{28,3} = 'Thomas R. Marshall';
USPres{29,1} = 'Warren G. Harding'; % 29th
USPres{29,2} = [1921, 1923];

USPres{29,3} = 'Calvin Coolidge';

USPres{30,1} = 'Calvin Coolidge'; % 30th

USPres{30,2} = [1923, 1929];
USPres{30,3} = 'Charles Dawes';

Write a program to display the information passed in:

function passFullCellArray(number, info)

% Describe the INFO input.

[dim1,dim2] = size(info); typ = class(info);

fprintf('\nInput 2 is a %d-by-%d %s array.\n',
dim1, dim2, typ);

% Show the result.
fprintf('\nThe %dth element of the array contains:\n',
number)
info{number, :}
Call the program, passing the entire cell array:
passFullCellArray (28, USPres)
Input 2 is a 30-by-3 cell array.
The 28th element of the array contains:

ans =
Woodrow Wilson

1-119

1 Classes (Data Types)

1-120

ans
1913 1921
ans =
Thomas R. Marshall

Passing Selected Cells of a Cell Array

You can also pass selected cells of a cell array in a function call. This example
passes the names of the four Vice Presidents in the form of a comma-separated
list. In this case, the function being called, showVPInfo, receives these strings
as four separate input arguments:

The value passed to this function is a list of four separate items:

USPres{27:30,3}
ans =

James S. Sherman
ans =

Thomas R. Marshall
ans =

Calvin Coolidge
ans =

Charles Dawes

Write a program that describes the data passed in and then displays the name
of a selected Vice President. Use the varargin function to accept and unpack
the four separate input arguments generated by the USPres{27:30,3} input:

function passPartialCellArray(number, varargin)

% Describe the VARARGIN input.
[dim1, dim2] = size(varargin(:)); typ = class(varargin);
fprintf('\nInput 2 is a %d-by-%d %s array.\n',

dim1, dim2, typ);

% Show the result

str = ['\nThe Vice President who served with ',
"the %dth US President was %s\n'];

n = number - 26;

fprintf(str, number, varargin{n})

Cell Arrays

Call the program, passing a 4-by-1 segment of the cell array:

passPartialCellArray(28, USPres{27:30,3})
Input 2 is a 4-by-1 cell array.

The Vice President who served with the 28th US President was
Thomas R. Marshall

Converting Between Cell Array and Struct Array

The cell2struct function converts a cell array to a struct array. The
statement

s = cell2struct(c,f,d)

converts a cell array c into a struct array s having the fields named in f and
based on the d axis of the input cell array.

The struct2cell function converts a structure array to a cell array. The
statement

c = struct2cell(s)

converts an m-by-n structure s that has p fields into a p-by-m-by-n cell array c:

Conversion Example

This example converts a 4-by-1-by-2 cell array USPres_c1 to a 1-by-2 struct
array USPres_s1 with four fields, and then back to a cell array USPres_c2
that is equal to the original.

Create the original cell array:

USPres_c1{1,1,1}
USPres_c1{2,1,1}
USPres_c1{3,1,1}
USPres_c1{4,1,1} e

{'Jdohn Garner';'Henry Wallace';'Harry S. Truman'};

'Franklin D. Roosevelt';
'Democratic’;
[1933, 1945];

USPres_c1{1,1,2}
USPres_c1{2,1,2}

'Harry S. Truman';
'Democratic';

1-121

1 Classes (Data Types)

1-122

USPres_c1{3,1,2} = [1945, 1953];
USPres_c1{4,1,2} {'Alben Barkley'};
whos USPres_cf1
Name Size Bytes Class Attributes

USPres_c1 4x1x2 964 cell

Convert the cell array to a struct array:

USPres_s1 = cell2struct(USPres_c1,
{'name', 'party', 'term','vp'}, 1);
whos USPres_s1
Name Size Bytes Class Attributes

USPres_s1 1x2 1220 struct

Convert back to a cell array and compare it with the original:

USPres_c2 = struct2cell(USPres_s1);
whos USPres_c2
Name Size Bytes Class Attributes

USPres_c2 4x1x2 964 cell

isequal (USPres_c1, USPres_c2)
ans =
1

Operator Summary

This section summarizes the following types of operators that work with cell
arrays:

® “Operators That Construct the Cell Array” on page 1-123

® “Operators That Concatenate Cells and Cell Content” on page 1-123

® “Operators Used for Cell Array Indexing ” on page 1-123

Cell Arrays

Operators That Construct the Cell Array

Syntax Description

C={ABDE} Builds a cell array C that can contain data of unlike
types in A, B, D, and E.

Operators That Concatenate Cells and Cell Content

Syntax Description

C3

{C1 C2} Concatenates cell arrays C1 and C2 into a two-element
cell array C3, such that C3{1} = C1 and C3{2} = C2.

Cc3 [C1 C2] Concatenates the contents of cell arrays C1 and C2
into a new cell array with 1length(C3) == length(C1)

+ length(C2).

Operators Used for Cell Array Indexing

Syntax Description

X = C(s) Returns the cells of array C that are specified by
subscripts s.

X = C{s} Returns the contents of the cells of C that are specified
by subscripts s.

X = C{s}(v) References one or more elements of an array that
resides within a cell. Subscript s selects the single
cell, and subscript v selects the array element(s).

X = C{s,}{s,} Returns the contents of a nested cell array. Subscripts
for the outer array C are s,. These subscripts can only
refer to one cell of the outer array. Subscripts for the
inner cell array are s,.

1-123

1 Classes (Data Types)

Syntax Description

X = C{s,}{s,}(v) | Returns one or more elements of an array that reside
in a nested cell array.

X = C{s}(t).f(v) | Returns one or more elements of an array that reside
in a struct field, where the struct resides in a cell of
cell array C. Subscripts are s for the cell array, t for
the struct array, and v for the lowest-level array.

Function Summary

This section summarizes the following types functions that work with cell
arrays:

“Functions Related to Constructing the Array” on page 1-124

¢ “Functions Related to the Type of the Array” on page 1-125

* “Functions Related to Obtaining Cell Array Contents” on page 1-125

® “Functions Related to Applying Functions to a Cell Array” on page 1-125

® “Functions Used with Cell Array Conversion” on page 1-126

Functions Related to Constructing the Array

Function Description

cat Concatenate arrays along specified dimension.

cell Create cell array.

horzcat Concatenate arrays horizontally.

length Length of array.

ndims Number of array dimensions.

numel Number of elements in array or subscripted array expression.
repmat Replicate and tile array.

reshape Reshape array.

1-124

Cell Arrays

Function Description
size Size of array.
vertcat Concatenate arrays vertically.
Functions Related to the Type of the Array
Function Description
cell2struct Convert cell array to structure array.
class Create object or return class of object.
iscell Determine whether input is cell array.
struct2cell Convert structure to cell array.
whos List variables in workspace.
Functions Related to Obtaining Cell Array Contents
Function Description
celldisp Display cell array contents.
cellplot Display a graphical depiction of a cell array.
deal Copy input to separate outputs.
Functions Related to Applying Functions to a Cell Array
Function Description
cellfun Apply function to each field of scalar cell array.
varargin Variable length input argument list.
varargout Variable length output argument list.

1-125

1 Classes (Data Types)

Functions Used with Cell Array Conversion

Function Description

cell2struct Convert cell array into struct array.
struct2cell Convert struct array into cell array.

mat2cell Divide matrix into cell array of matrices
cell2mat Convert cell array of matrices to single matrix
num2cell Convert numeric array to cell array

1-126

Function Handles

Function Handles

In this section...

“Overview” on page 1-127

“Creating a Function Handle” on page 1-127

“Calling a Function By Means of Its Handle” on page 1-131
“Preserving Data from the Workspace ” on page 1-133
“Applications of Function Handles” on page 1-136

“Saving and Loading Function Handles” on page 1-142
“Advanced Operations on Function Handles” on page 1-142

“Functions That Operate on Function Handles” on page 1-148

Overview

A function handle is a callable association to a MATLAB function. It contains
an association to that function that enables you to invoke the function
regardless of where you call it from. This means that, even if you are outside
the normal scope of a function, you can still call it if you use its handle.

With function handles, you can:

e Pass a function to another function

Capture data values for later use by a function

Call functions outside of their normal scope

Save the handle in a MAT-file to be used in a later MATLAB session

See “Applications of Function Handles” on page 1-136 for an explanation
of each of these applications.

Creating a Function Handle

¢ “Maximum Length of a Function Name” on page 1-128

1-127

1 Classes (Data Types)

1-128

® “The Role of Scope, Precedence, and Overloading When Creating a Function
Handle” on page 1-129

® “Obtaining Permissions from Class Methods” on page 1-129
¢ “Using Function Handles for Anonymous Functions” on page 1-130

* “Arrays of Function Handles” on page 1-131

You construct a handle for a specific function by preceding the function name
with an @ sign. The syntax is:

h = @functionname

where h 1s the variable to which the returned function handle is assigned.

Use only the function name, with no path information, after the @ sign. If
there is more than one function with this name, MATLAB associates with
the handle the one function source it would dispatch to if you were actually
calling the function.

Create a handle h for a function plot that is on your MATLAB path:

h = @plot;

Once you create a handle for a function, you can invoke the function by
means of the handle instead of using the function name. Because the handle
contains the absolute path to its function, you can invoke the function from
any location that MATLAB is able to reach, as long as the program file for
the function still exists at this location. This means that functions in one
file can call functions that are not on the MATLAB path, subfunctions in a
separate file, or even functions that are private to another folder, and thus
not normally accessible to that caller.

Maximum Length of a Function Name
Function names used in handles are unique up to N characters, where N is

the number returned by the function namelengthmax. If the function name
exceeds that length, MATLAB truncates the latter part of the name.

For function handles created for Sun™ Java™ constructors, the length of any
segment of the package name or class name must not exceed namelengthmax

Function Handles

characters. (The term segment refers to any portion of the name that lies
before, between, or after a dot. For example, java.lang.String has three
segments). The overall length of the string specifying the package and class
has no limit.

The Role of Scope, Precedence, and Overloading When
Creating a Function Handle

At the time you create a function handle, MATLAB must decide exactly which
function it is to associate the handle to. In doing so, MATLAB uses the same

rules used to determine which file to invoke when you make a function call.
To make this determination, MATLAB considers the following:

¢ Scope — The function named must be on the MATLAB path at the time
the handle is constructed.

¢ Precedence — MATLAB selects which function(s) to associate the
handle with, according to the function precedence rules described under
Determining Which Function Gets Called.

¢ Overloading — If additional files on the path overload the function for any
of the standard MATLAB classes, such as double or char, then MATLAB
associates the handle with these files, as well.

Program files that overload a function for classes other than the standard
MATLAB classes are not associated with the function handle at the time it
is constructed. Function handles do operate on these types of overloaded
functions, but MATLAB determines which implementation to call at the time
of evaluation in this case.

Obtaining Permissions from Class Methods

When creating a function handle inside a method of a class, the function

is resolved using the permissions of that method. When MATLAB invokes
the function handle, it does so using the permissions of the class. This gives
MATLAB the same access as the location where the function handle was
created, including access to private and protected methods accessible to that
class.

1-129

1 Classes (Data Types)

1-130

Example. This example defines two methods. One, updateObj, defines a
listener for an event called Update, and the other , callbackfcn, responds to
this event whenever it should occur. The latter function is a private function
and thus would not normally be within the scope of the notify function.
However, because @callbackfcn is actually a function handle, it retains the
permissions of the context that created the function handle:

classdef updateObj < handle
events
Update
end

methods
function obj = updateObj(varargin)
addlistener(obj, 'Update', @callbackfcn);
notify(obj, 'Update');
end
end

methods (Access = private)
function obj callbackfcn(obj, varargin)
disp('Object Updated')
disp(obj);
end
end
end

To run this function, invoke updateObj at the MATLAB command line.

Using Function Handles for Anonymous Functions

Function handles also serve as the means of invoking anonymous functions.
An anonymous function is a one-line expression-based MATLAB function
that does not require a program file.

For example, the statement

sqr = @(x) x."2;

Function Handles

creates an anonymous function that computes the square of its input
argument X. The @ operator makes sqr a function handle, giving you a means
of calling the function:

sqr(20)
ans =
400

Like nested functions, a handle to an anonymous function also stores all data
that will be needed to resolve the handle when calling the function. Shares
same issues as nested functions do.

See the documentation on “Anonymous Functions” on page 4-3 for more
information.

Arrays of Function Handles
To create an array of function handles, you must use a cell array:

trigFun = {@sin, @cos, @tan};

For example, to plot the cosine of the range -pi to pi at 0.01 intervals, use

plot(trigFun{2}(-pi:0.01:pi))

Calling a Function By Means of Its Handle

Function handle can give you access to functions you might not be able to
execute. For instance, with a handle you can call a function even if within
your former MATLAB path. You can also call a subfunction from outside

of the file that defines that function.

Calling Syntax
The syntax for calling a function using a function handle is the same used
when calling the function directly. For example, if you call function myFun
like this:

[out1, out2, ...] = myFun(ini1, in2, ...);

then you would call it using a handle in the same way, but using the handle
name instead:

1-131

1 Classes (Data Types)

1-132

fHandle = @myFun;
[out1, out2, ...] = fHandle(in1, in2, ...);

There is one small difference. If the function being called takes no input
arguments, then you must call the function with empty parentheses placed
after the handle name. If you use only the handle name, MATLAB just
identifies the name of the function:

% This identifies the handle. % This invokes the function.
fHandle = @computer; fHandle = @computer;
fHandle fHandle ()
ans = ans =
@computer PCWIN

Example — Calling a Function with Multiple Outputs

The example below returns multiple values from a call to an anonymous
function. Create anonymous function f that locates the nonzero elements of
an array, and returns the row, column, and value of each element in variables
row, col, and val

f = @(X)find(X);

Call the function on matrix m using the function handle f. Because the
function uses the MATLAB find function which returns up to three outputs,
you can specify from 0 to 3 outputs in the call:

m=1[320; -507; 00 1]

m —

3 2 0

-5 0 7

0 0 1
[row col val] = f(m);
val
val =

3

-5

Function Handles

Returning a Handle for Use Outside of a Function File

As stated previously, you can use function handles to call a function that may
otherwise be hidden or out of scope. This example function getHandle returns
a function handle fHandle to a caller that is outside of the file:

function fHandle = getHandle
fHandle = @subFun;

function res = subFun(ti1, t2, varargin);

Call getHandle to obtain a function handle with which to invoke the
subfunction. You can now call the subfunction as you would any function
that is in scope:

f1 = getHandle;
result = f1(startTime, endTime, procedure);

Preserving Data from the Workspace

Both anonymous functions and nested functions make use of variable data
that is stored outside the body of the function itself. For example, the
anonymous function shown here uses two variables: X and K. You pass the X
variable into the anonymous function whenever you invoke the function. The
value for K however is taken from the currently active workspace:

K = 200;
fAnon = @(X)K * X;

fAnon([2.54 1.43 0.68 1.90 1.02 2.13]);

What would happen if you tried to invoke this function after you cleared K
from the workspace? Or if you saved the anonymous function to a .mat file
and then loaded it into an entirely separate computing environment where
K is not defined?

1-133

1 Classes (Data Types)

1-134

The answer is that MATLAB stores any values needed by an anonymous (or
nested) function within the handle itself. It does this at the time you construct
the handle. This does not include values from the argument list as these
values get passed in whenever you call the function.

Preserving Data with Anonymous Functions

If you create an anonymous function at the MATLAB command window,
then it shares the base workspace with your current MATLAB session. If
you create the function inside of another function, then it shares the outer
function’s workspace. Either way, if your anonymous function depends upon
variables from an outside workspace, then MATLAB stores the variables and
their values within the function handle at the time the handle is created.

This example puts a 3-by-5 matrix into the base workspace, and then creates a
function handle to an anonymous function that requires access to the matrix.

Create matrix A and anonymous function testAnon:

A = magic(5); A(4:5,:) =[]

A =
17 24 1 8 15
23 5 7 14 16
4 6 13 20 22

testAnon = @(x)x * A; % Anonymous function

Call the anonymous function via its handle, passing in a multiplier value.
This multiplies all elements by 5.2:

testAnon(5.2)

ans =
88.4000 124.8000 5.2000 41.6000 78.0000
119.6000 26.0000 36.4000 72.8000 83.2000
20.8000 31.2000 67.6000 104.0000 114.4000

Clear variable A from the base workspace and verify that this action has no
effect on the output of the anonymous function:

clear A

Function Handles

testAnon(5.2)

ans =
88.4000 124.8000 5.2000 41.6000 78.0000
119.6000 26.0000 36.4000 72.8000 83.2000
20.8000 31.2000 67.6000 104.0000 114.4000

This works because the variable A and its value at the time the anonymous
function is created is preserved within the function handle that also provides
access to the anonymous function. See “Variables Used in the Expression” on
page 4-8 for more information.

Preserving Data with Nested Functions

Nested functions are similar to anonymous functions in their ability to
preserve workspace data needed by a function handle. In this case however,
the workspace belongs to one of the functions inside of which the handle is
being created. See “Variable Scope in Nested Functions” on page 4-19 and
“Using Function Handles with Nested Functions” on page 4-21 for more
information on this subject.

This example shows a function getHandles that returns a handle to nested
function getApproxVal V4. The nested function uses two variables, const
and adjust, from the workspace of the outer function. Calling getHandles
creates a function handle to the nested function and also stores these two
variables within that handle so that they will be available whenever the
nested function is invoked:

function handle = getHandles(adjust)
const = 16.3;
handle = @getApproxVal V4;

function vOut = getApproxVal_V4(vectIn)
vOut = ((vectIn+adjust)*const) + ((vectIn-adjust)*const);
end

end

Call the getHandles function to obtain a handle to the nested function:

adjustvVal = 0.023;
getApproxValue = getHandles(adjustval);

1-135

1 Classes (Data Types)

1-136

getApproxvalue([0.67 -0.09 1.01 0.33 -0.14 -0.23])
ans =
21.8420 -2.9340 32.9260 10.7580 -4.5640 -7.4980

The documentation on “Examining a Function Handle” on page 1-142 explains
how to see which variables are stored within a particular function handle.
Another helpful resource is “Using Function Handles with Nested Functions”
on page 4-21.

Loading a Saved Handle to a Nested Function. If you save a function
handle to a nested function and, at some later date, modify the function
and then reload the handle, you may observe unexpected behavior from the
restored handle. when you invoke the function from the reloaded handle.
This is especially true if the values in the workspace have changed since the
handle was created.

Applications of Function Handles

The following sections discuss the advantages of using function handles:

e “Pass a Function to Another Function” on page 1-137
e “Capture Data Values For Later Use By a Function” on page 1-138
e “Call Functions Outside of Their Normal Scope” on page 1-141

e “Save the Handle in a MAT-File for Use in a Later MATLAB Session” on
page 1-141

Example of Passing a Function Handle

The following example creates a handle for a function supplied by MATLAB
called humps and assigns it to the variable h. (The humps function returns a
strong maxima near x = 0.3 and x = 0.9).

h = @humps;

After constructing the handle, you can pass it in the argument list of a call

to some other function, as shown here. This example passes the function
handle h that was just created as the first argument in a call to fminbnd. This
function then minimizes over the interval [0.3, 1].

Function Handles

x
|

= fminbnd(h, 0.3, 1)
X:
0.6370

Using a function handle enables you to pass different functions for fminbnd to
use in determining its final result.

Pass a Function to Another Function

The ability to pass variables to a function enables you to run the function on
different values. In the same way, you can pass function handles as input
arguments to a function, thus allowing the called function to change the
operations it runs on the input data.

Example 1 — Run quad on Varying Functions. Run the quadrature
function on varying input functions:

a=0; b-=25;

quad(@log, a, b)
ans =
3.0472

quad(@sin, a, b)
ans =
0.7163

quad(@humps, a, b)
ans =
12.3566

Example 2 — Run quad on Anonymous Functions. Run quad on a
MATLAB built-in function or an anonymous function:

n quad(@log, 0, 3);

]
1}

quad(@(x)x.”2, 0, 3);
Change the parameters of the function you pass to quad with a simple

modification of the anonymous function that is associated with the function
handle input:

1-137

1 Classes (Data Types)

1-138

a = 3.7;
z quad(@(x)x."a, 0, 3);

Example 3 — Compare quad Results on Different Functions. Compare
the integral of the cosine function over the interval [a, b]:

a=0; b=10;
int1 = quad(@cos,a,b)

int1
-0.5440

with the integral over the same interval of the piecewise polynomial pp that
approximates the cosine function by interpolating the computed values x
and y:

X = a:b;

y = C0S(X);

pp = spline(x,y);

int2 = quad(@(x)ppval(pp,x), a, b)

int2 =
-0.5485

Capture Data Values For Later Use By a Function

You can do more with a function handle than just create an association to a
certain function. By using anonymous functions, you can also capture certain
variables and their values from the function workspace and store them in
the handle. These data values are stored in the handle at the time of its
construction, and are contained within the handle for as long as it exists.
Whenever you then invoke the function by means of its handle, MATLAB
supplies the function with all variable inputs specified in the argument list
of the function call, and also any constant inputs that were stored in the
function handle at the time of its construction.

Storing some or all input data in a function handle enables you to reliably
use the same set of data with that function regardless of where or when you
invoke the handle. You can also interrupt your use of a function and resume

it with the same data at a later time simply by saving the function handle to
a MAT-file.

Function Handles

Example 1 — Constructing a Function Handle that Preserves Its
Variables. Compare the following two ways of implementing a simple
plotting function called draw_plot. The first case creates the function as
one that you would call by name and that accepts seven inputs specifying
coordinate and property information:

function draw_plot(x, y, 1lnSpec, 1lnWidth, mkEdge, mkFace, mkSize)
plot(x, y, lnSpec, ...

'LineWwidth', lnWidth, ...

'MarkerEdgeColor', mkEdge, ...

'MarkerFaceColor', mkFace, ...

'MarkerSize', mkSize)

The second case implements draw_plot as an anonymous function to be
called by a function handle, h. The draw_plot function has only two inputs
now; the remaining five are specified only on a call to the handle constructor
function, get_plot handle:

function h = get_plot_handle(1lnSpec, 1lnWidth, mkEdge,
mkFace, mkSize)
h = @draw_plot;
function draw_plot(x, y)
plot(x, y, lnSpec,
'LineWidth', 1nWidth,
'MarkerkdgeColor', mkEdge,
'MarkerFaceColor', mkFace,
'MarkerSize', mkSize)
end
end

Because these input values are required by the draw_plot function but are not

made available in its argument list, MATLAB supplies them by storing them
in the function handle for draw_plot at the time it is constructed. Construct
the function handle h, also supplying the values to be stored in handle:

h = get_plot_handle('--rs', 2, 'k', 'g', 10);
Now call the function, specifying only the x and y inputs:

X = -pi:pi/10:pi;
y tan(sin(x)) - sin(tan(x));

1-139

1 Classes (Data Types)

1-140

h(x, vy) % Draw the plot

The later section on “Examining a Function Handle” on page 1-142 continues
this example by showing how you can examine the contents of the function
and workspace contents of this function handle.

Example 2 — Varying Data Values Stored in a Function Handle.
Values stored within a handle to a nested function do not have to remain
constant. The following function constructs and returns a function handle h to
the anonymous function addOne. In addition to associating the handle with
addOne, MATLAB also stores the initial value of x in the function handle:

function h = counter

X = 0;
h = @addOne;
function y = addOne;
X =X+ 1;
y = X;
end
end

The addOne function that is associated with handle h increments variable x
each time you call it. This modifies the value of the variable stored in the
function handle:

counter;

Example 3 — You Cannot Vary Data in a Handle to an Anonymous
Function. Unlike the example above, values stored within a handle to an
anonymous function do remain constant. Construct a handle to an anonymous
function that just returns the value of x, and initialize x to 300. The value of x
within the function handle remains constant regardless of how you modify x
external to the handle:

x = 300;

Function Handles

>
I

e()x;

x

»n - |
1}

50;

Q0 =
S5 o~

300

clear x

h()

ans =
300

Call Functions Outside of Their Normal Scope

By design, only functions within a program file are permitted to access
subfunctions defined within that file. However, if, in this same file, you were
to construct a function handle for one of the internal subfunctions, and then
pass that handle to a variable that exists outside of the file, access to that
subfunction would be essentially unlimited. By capturing the access to the
subfunction in a function handle, and then making that handle available to
functions external to the file (or to the command line), the example extends
that scope. An example of this is shown in the preceding section, “Capture
Data Values For Later Use By a Function” on page 1-138.

Private functions also have specific access rules that limit their availability
with the MATLAB environment. But, as with subfunctions, MATLAB allows
you to construct a handle for a private function. Therefore, you can call it by
means of that handle from any location or even from the MATLAB command
line, should it be necessary.

Save the Handle in a MAT-File for Use in a Later MATLAB
Session

If you have one or more function handles that you would like to reuse in a later
MATLAB session, you can store them in a MAT-file using the save function
and then use load later on to restore them to your MATLAB workspace.

1-141

1 Classes (Data Types)

1-142

Saving and Loading Function Handles

You can save and load function handles in a MAT-file using the MATLAB save
and load functions. If you load a function handle that you saved in an earlier
MATLAB session, the following conditions could cause unexpected behavior:

¢ Any of the files that define the function have been moved, and thus no
longer exist on the path stored in the handle.

® You load the function handle into an environment different from that in
which it was saved. For example, the source for the function either does
not exist or is located in a different folder than on the system on which
the handle was saved.

In both of these cases, the function handle is now invalid because it is no
longer associated with any existing function code. Although the handle is
invalid, MATLAB still performs the load successfully and without displaying
a warning. Attempting to invoke the handle, however, results in an error.

Invalid or Obsolete Function Handles

If you create a handle to a function that is not on the MATLAB path, or if you
load a handle to a function that is no longer on the path, MATLAB catches
the error only when the handle is invoked. You can assign an invalid handle
and use it in such operations as func2str. MATLAB catches and reports an
error only when you attempt to use it in a runtime operation.

Advanced Operations on Function Handles
Advanced operations include:

¢ “Examining a Function Handle” on page 1-142
® “Converting to and from a String” on page 1-144

¢ “Comparing Function Handles” on page 1-145

Examining a Function Handle
Use the functions function to examine the contents of a function handle.

Function Handles

Caution MATLAB provides the functions function for querying and
debugging purposes only. Because its behavior may change in subsequent
releases, you should not rely upon it for programming purposes.

The following example is a continuation of an example in an earlier section of
the Function Handles documentation. See Example 1 in the section “Capture
Data Values For Later Use By a Function” on page 1-138 for the complete
example.

Construct a function handle that contains both a function association, and
data required by that function to execute. The following function constructs
the function handle, h:

function h = get_plot_handle(lnSpec, lnWidth, mkEdge,
mkFace, mkSize)
h = @draw_plot;
function draw_plot(x, V)
plot(x, y, lnSpec,
‘LineWidth', 1nWidth,
‘MarkerkEdgeColor', mkEdge,
‘MarkerFaceColor', mkFace,
'MarkerSize', mkSize)
end
end

Use functions to examine the contents of the returned handle:

.f
f =

functions(h)
function: 'get_plot_handle/draw_plot'
type: 'nested’
file: 'D:\matlab\work\get_plot_handle.m'
workspace: {[1x1 struct]}

The call to functions returns a structure with four fields:

1-143

1 Classes (Data Types)

e function — Name of the function or subfunction to which the handle
is associated. (Function names that follow a slash character (/) are
implemented in the program code as subfunctions.)

® type — Type of function (e.g., simple, nested, anonymous)

e file — Filename and path to the file. (For built-in functions, this is the
string 'MATLAB built-in function')

® workspace — Variables in the function workspace at the time the handle
was constructed, along with their values

Examine the workspace variables that you saved in the function handle:

f.workspace{:}

ans =
h: @get_plot_handle/draw_plot
InSpec: '--rs'
InWidth: 2

mrkrEdge: 'k
mrkrFace: 'g’
mrkrSize: 10

Converting to and from a String
Two functions, str2func and func2str enable you to convert between a

string containing a function name and a function handle that is associated
with that function name.

Converting a String to a Function Handle. Another means of creating a
function handle is to convert a string that holds a function name to a handle
for the named function. You can do this using the str2func function:

handle = str2func('functionname');

The example below takes the name of a function as the first argument. It
compares part of the name to see if this is a polynomial function, converts the
function string to a function handle if it is not, and then calls the function by
means of its handle:

function run_function(funcname, argl, arg2)
if strncmp(funcname, 'poly', 4)
disp 'You cannot run polynomial functions on this data.'

1-144

Function Handles

return
else
h = str2func(funcname);
h(arg1, arg2);
end

Note Nested functions are not accessible to str2func. To construct a
function handle for a nested function, you must use the function handle
constructor, @.

Converting a Function Handle to a String. You can also convert a
function handle back into a string using the func2str function:

functionname = func2str(handle);

This example converts the function handle h to a string containing the function
name, and then uses the function name in a message displayed to the user:

function call _h(h, argl, arg2)
sprintf('Calling function %s ...\n', func2str(h))
h(arg1, arg2)

Comparing Function Handles
This section describes how MATLAB determines whether or not separate

function handles are equal to each other:

¢ “Comparing Handles Constructed from a Named Function” on page 1-145
* “Comparing Handles to Anonymous Functions” on page 1-146

® “Comparing Handles to Nested Functions” on page 1-147

® “Comparing Handles Saved to a MAT-File” on page 1-147

Comparing Handles Constructed from a Named Function. MATLAB
considers function handles that you construct from the same named function

(e.g., handle = @sin) to be equal. The isequal function returns a value of
true when comparing these types of handles:

1-145

1 Classes (Data Types)

1-146

func1l = @sin;
func2 = @sin;
isequal(funci, func2)
ans =
1

If you save these handles to a MAT-file, and then load them back into the
workspace later on, they are still equal.

Comparing Handles to Anonymous Functions. Unlike handles to named
functions, any two function handles that represent the same anonymous
function (i.e., handles to anonymous functions that contain the same text) are
not equal. This is because MATLAB cannot guarantee that the frozen values
of non-argument variables (such as A, below) are the same.

A = 5;
h1 = @(x)A * x."2;
h2 = @(x)A * x."2;

isequal(h1, h2)
ans =
0

Note In general, MATLAB may underestimate the equality of function
handles. That is, a test for equality may return false even when the functions
happen to behave the same. But in cases where MATLAB does indicate
equality, the functions are guaranteed to behave in an identical manner.

If you make a copy of an anonymous function handle, the copy and the
original are equal:

h1 = @(x)A * x."2; h2 = hi;
isequal(h1, h2)
ans =

1

Function Handles

Comparing Handles to Nested Functions. MATLAB considers function
handles to the same nested function to be equal only if your code constructs
these handles on the same call to the function containing the nested functions.
Given this function that constructs two handles to the same nested function:

function [h1, h2] = test_eq(a, b, C)

h1 = @findZz;

h2 = @findZz;
function z = findZ
z =4a."3+bDb."2 +c';
end

end

function handles constructed from the same nested function and on the same
call to the parent function are considered equal:

[h1 h2] = test_eq(4, 19, -7);

isequal(h1, h2),
ans =
1

while those constructed from different calls are not considered equal:
[g1 92] = test_eq(3, -1, 2);

isequal(h1, qt)
ans =
0

Comparing Handles Saved to a MAT-File. If you save equivalent
anonymous or nested function handles to separate MAT-files, and then load
them back into the MATLAB workspace, they are no longer equal. This is
because saving the function handle loses track of the original circumstances
under which the function handle was created. Reloading it results in a
function handle that compares as being unequal to the original function
handle.

Create two equivalent anonymous function handles:

1-147

1 Classes (Data Types)

1-148

h1 @(x) sin(x);
h2 = hi;

isequal(h1, h2)
ans =
1

Save each to a different MAT-file:

save fnameil hi;
save fname2 h2;

Clear the MATLAB workspace, and then load the function handles back into
the workspace:

clear all
load fnamet
load fname2

The function handles are no longer considered equal:

isequal(h1, h2)
ans =
0

Note, however, that equal anonymous and nested function handles that you
save to the same MAT-file are equal when loaded back into MATLAB.

Functions That Operate on Function Handles

MATLAB provides the following functions for working with function handles.
See the reference pages for these functions for more information.

Function Description

functions Return information describing a function handle.

func2str Construct a function name string from a function
handle.

str2func Construct a function handle from a function name
string.

Function Handles

Function Description

save Save a function handle from the current workspace to
a MAT-file.

load Load a function handle from a MAT-file into the current
workspace.

isa Determine if a variable contains a function handle.

isequal Determine if two function handles are handles to the

same function.

1-149

1 Classes (Data Types)

Map Containers

1-150

In this section...

“Overview of the Map Data Structure” on page 1-150
“Description of the Map Class” on page 1-151

“Creating a Map Object” on page 1-153

“Examining the Contents of the Map” on page 1-156
“Reading and Writing Using a Key Index” on page 1-157
“Modifying Keys and Values in the Map” on page 1-160
“Mapping to Different Value Types” on page 1-163

Overview of the Map Data Structure

A Map is a type of fast key lookup data structure that offers a flexible means
of indexing into its individual elements. Unlike most array data structures
in the MATLAB software that only allow access to the elements by means of
integer indices, indices for a Map can be nearly any scalar numeric value

or a character string.

Indices into the elements of a Map are called keys. These keys, along with the
data values associated with them, are stored within the Map. Each entry of a
Map contains exactly one unique key and its corresponding value. Indexing

into the Map of rainfall statistics shown below with a string representing the
month of August yields the value internally associated with that month, 37.3.

Map Containers

KEYS VALUES
Jan 327.2
Feb 368.2
Mar 197.6
Apr 178.4
May 100.0
Jun 69.9
Jul 323

Aug ——— | Aug 37.3 — » 373
Sep 19.0
Oct 37.0
Nov 73.2
Dec 110.9
Annual 1551.0

Mean monthly rainfall statistics (mm)

Keys are not restricted to integers as they are with other arrays. Specifically,
a key may be any of the following types:

® 1-by-N character array

e Scalar real double or single

¢ Signed or unsigned scalar integer

The values stored in a Map can be of any type. This includes arrays of
numeric values, structures, cells, strings, objects, or other Maps.

Note A Map is most memory efficient when the data stored in it is a scalar
number or a character array.

Description of the Map Class

A Map is actually an object, or instance, of a MATLAB class called Map. It is
also a handle object and, as such, it behaves like any other MATLAB handle
object. This section gives a brief overview of the Map class. For more details,

1-151

1 Classes (Data Types)

1-152

see the function reference pages for the Map constructor or for any method
of the class.

Properties of the Map Class

All objects of the Map class have three properties. You cannot write directly to
any of these properties; you can change them only by means of the methods
of the Map class.

Property | Description Default
Count Unsigned 64-bit integer that represents the total 0
number of key/value pairs contained in the Map
object.

KeyType String that indicates the type of all keys contained | char
in the Map object. KeyType can be any of the
following: double, single, char, and signed or
unsigned 32-bit or 64-bit integer. If you attempt to
add keys of an unsupported type, int8 for example,
MATLAB makes them double.

ValueType | String that indicates the type of values contained any
in the Map object. If the values in a Map are all
scalar numbers of the same type, ValueType is set
to that type. If the values are all character arrays,
ValueType is 'char'. Otherwise, ValueType is
‘any'.

To examine one of these properties, follow the name of the Map object with
a dot and then the property name. For example, to see what type of keys
are used in Map mapObj, use

mapObj .KeyType

A Map is a handle object. As such, if you make a copy of the object, MATLAB
does not create a new Map; it creates a new handle for the existing Map that
you specify. If you alter the Map’s contents in reference to this new handle,
MATLAB applies the changes you make to the original Map as well. You can,
however, delete the new handle without affecting the original Map.

Map Containers

Methods of the Map Class

The Map class implements the following methods. Their use is explained in the
later sections of this documentation and also in the function reference pages.

Method Description

isKey Check if Map contains specified key
keys Names of all keys in Map

length Length of Map

remove Remove key and its value from Map
size Dimensions of Map

values Values contained in Map

Creating a Map Obiject

A Map is an object of the Map class. It is defined within a MATLAB package
called containers. As with any class, you use its constructor function to
create any new instances of it. You must include the package name when
calling the constructor:

newMap = containers.Map(optional_keys_and_values)

Constructing an Empty Map Object

When you call the Map constructor with no input arguments, MATLAB
constructs an empty Map object. When you do not end the command with a
semicolon, MATLAB displays the following information about the object you
have constructed:

newMap = containers.Map()

newMap =
containers.Map handle
Package: containers

Properties:
Count: O
KeyType: 'char'
ValueType: 'any'

1-153

1 Classes (Data Types)

1-154

Methods, Events, Superclasses

The properties of an empty Map object are set to their default values:

® Count=0
® KeyType = 'char'
® ValueType = 'any'

Once you construct the empty Map object, you can use the keys and values
methods to populate it. For a summary of MATLAB functions you can use
with a Map object, see “Methods of the Map Class” on page 1-153

Constructing An Initialized Map Object

Most of the time, you will want to initialize the Map with at least some keys
and values at the time you construct it. You can enter one or more sets of
keys and values using the syntax shown here. The brace operators ({}) are
not required if you enter only one key/value pair:

mapObj = containers.Map({key1, key2, ...}, {vall, val2, ...});

For those keys and values that are character strings, be sure that you
specify them enclosed within single quotation marks. For example, when
constructing a Map that has character string keys, use

mapObj = containers.Map(...
{'keystr1', 'keystr2', ...}, {vall, val2, ...});

As an example of constructing an initialized Map object, create a new Map for
the following key/value pairs taken from the monthly rainfall map shown
earlier in this section.

Map Containers

KEYS VALUES
Jan 327.2
Feb 368.2
Mar 197.6
Apr 178.4
May 100.0
Jun 69.9
Jul 323
Aug 37.3
Sep 19.0
Oct 37.0
Nov 73.2
Dec 110.9
Annual 1551.0

k = {'dJan', 'Feb', 'Mar', 'Apr', 'May', 'Jun’,
‘Jul', 'Aug', 'Sep', 'Oct'’, 'Nov', 'Dec', 'Annual'};

v = {327.2, 368.2, 197.6, 178.4, 100.0, 69.9,
32.3, 37.3, 19.0, 37.0, 73.2, 110.9, 1551.0};

rainfallMap = containers.Map(k, v)

rainfallMap
containers.Map handle
Package: containers

Properties:
Count: 13
KeyType: 'char'
ValueType: 'double'
Methods, Events, Superclasses

The Count property is now set to the number of key/value pairs in the Map,
13, the KeyType is char, and the ValueType is double.

1-155

1 Classes (Data Types)

1-156

Combining Map Obijects

You can combine Map objects vertically using concatenation. However, the
result is not a vector of Maps, but rather a single Map object containing all
key/value pairs of the contributing Maps. Horizontal vectors of Maps are not
allowed. See “Building a Map with Concatenation” on page 1-159, below.

Examining the Contents of the Map

Each entry in a Map consists of two parts: a unique key and its corresponding
value. To find all the keys in a Map, use the keys method. To find all of
the values, use the values method.

Create a new Map called tickets that maps airline ticket numbers to the
holders of those tickets. Construct the Map with four key/value pairs:

ticketMap = containers.Map(...
{'2R175', 'B7398', 'A479GY', 'NZ1452'},
{'Jdames Enright', 'Carl Haynes', 'Sarah Latham',
'Bradley Reid'});

Use the keys method to display all keys in the Map. MATLAB lists keys of
type char in alphabetical order, and keys of any numeric type in numerical
order:

keys(ticketMap)
ans =
'2R175" "A479GY’ 'B7398" 'NZ1452'

Next, display the values that are associated with those keys in the Map. The
order of the values is determined by the order of the keys associated with

them.

This table shows the keys listed in alphabetical order:

keys values
2R175 James Enright
A479GY Sarah Latham

Map Containers

keys values
B7398 Carl Haynes
NZ1452 Bradley Reid

The values method uses the same ordering of values:

values(ticketMap)
ans =
'dames Enright' 'Sarah Latham' 'Carl Haynes' 'Bradley Reid'

Reading and Writing Using a Key Index

When reading from the Map, use the same keys that you have defined and
associated with particular values. Writing new entries to the Map requires
that you supply the values to store with a key for each one .

Note For a large Map, the keys and value methods use a lot of memory as
their outputs are cell arrays.

Reading From the Map

After you have constructed and populated your Map, you can begin to use it to
store and retrieve data. You use a Map in the same manner that you would an
array, except that you are not restricted to using integer indices. The general
syntax for looking up a value (valueN) for a given key (keyN) is shown here. If
the key is a character string, enclose it in single quotation marks:

valueN = mapObj (keyN);

You can find any single value by indexing into the map with the appropriate
key:

passenger = ticketMap('2R175")
passenger
James Enright

Find the person who holds ticket A479GY:

1-157

1 Classes (Data Types)

1-158

sprintf (' Would passenger %s please come to the desk?\n',
ticketMap('A479GY "))

ans =
Would passenger Sarah Latham please come to the desk?

To access the values of multiple keys, use the values method, specifying
the keys in a cell array:

values(ticketMap, {'2R175', 'B7398'})
ans =
'‘dames Enright' ‘Carl Haynes'

You cannot use the colon operator to access a range of keys as you can with
other MATLAB classes. For example, the following statement throws an error:

ticketMap('2R175':'B7398")

Adding Key/Value Pairs

Unlike other array types, each entry in a Map consists of two items: the value
and its key. When you write a new value to a Map, you must supply its key as
well. This key must be consistent in type with any other keys in the Map.

Use the following syntax to insert additional elements into a Map:
existingMapObj (newKeyName) = newValue;

Add two more entries to the ticketMap used in the above examples, Verify
that the Map now has five key/value pairs:

ticketMap('947F4') = 'Susan Spera';
ticketMap('417R93') = 'Patricia Hughes';

ticketMap.Count
ans =
6

List all of the keys and values in Map ticketMap:

keys(ticketMap), values(ticketMap)
ans =

Map Containers

'2R175" "417R93' '947F4" "A479GY"' 'B7398' "NZ1452'
ans =
Columns 1 through 3
‘dames Enright' ‘Patricia Hughes' ‘Susan Spera'
Columns 4 through 6
‘Sarah Latham' ‘Carl Haynes' ‘Bradley Reid'

Building a Map with Concatenation

You can add key/value pairs to a Map in groups using concatenation. The
concatenation of Map objects is different from other classes. Instead of
building a vector of s, MATLAB returns a single Map containing the key/value
pairs from each of the contributing Map objects.

Rules for the concatenation of Map objects are:

¢ Only vertical vectors of Map objects are allowed. You cannot create an
m-by-n array or a horizontal vector of s. For this reason, vertcat is
supported for Map objects, but not horzcat.

e All keys in each map being concatenated must be of the same class.

® You can combine Maps with different numbers of key/value pairs. The
result is a single Map object containing key/value pairs from each of the
contributing maps:

tMap1 = containers.Map({'2R175', 'B7398', 'A479GY'},
{'Jdames Enright', 'Carl Haynes', 'Sarah Latham'});

tMap2 = containers.Map({'417R93', 'NZ1452', '947F4'},
{'Patricia Hughes', 'Bradley Reid', 'Susan Spera'});

% Concatenate the two maps:
ticketMap = [tMap1; tMap2];

The result of this concatenation is the same 6-element map that was
constructed in the previous section:

ticketMap.Count
ans =
6

1-159

1 Classes (Data Types)

1-160

keys(ticketMap), values(ticketMap)

ans =
'2R175" "417R93' '947F4' "A479GY"' 'B7398' 'Nz1452"
ans =
Columns 1 through 3
‘dames Enright' ‘Patricia Hughes' 'Susan Spera'
Columns 4 through 6
‘Sarah Latham' ‘Carl Haynes' 'Bradley Reid'

¢ Concatenation does not include duplicate keys or their values in the
resulting Map object.

In the following example, both objects m1 and m2 use a key of 8. In Map m1,
8 is a key to value C; in m2, it is a key to value X:

m1 = containers.Map({1, 5, 8}, {'A', 'B', 'C'});
m2 = containers.Map({8, 9, 6}, {'X', 'Y', 'Z'});

Combine m1 and m2 to form a new Map object, m:
m= [ml; m2];

The resulting Map object m has only five key/value pairs. The value C was
dropped from the concatenation because its key was not unique:

keys(m), values(m)
ans =

[11 [5] [6] [8] [91]
ans =

‘A 'B' 'z ‘X! 'y!

Modifying Keys and Values in the Map

In addition to reading and writing the contents of a Map, you can also delete
key/value pairs and modify any of its values or keys.

Note Keep in mind that if you have more than one handle to a Map,
modifying the handle also makes changes to the original Map. See “Modifying
a Copy of the Map” on page 1-162, below.

Map Containers

Removing Keys and Values from the Map

Use the remove method to delete any entries from a Map. When calling this
method, specify the Map object name and the key name to remove. MATLAB
deletes the key and its associated value from the Map.

The syntax for the remove method is

remove ('mapName', 'keyname');

Remove one entry (the specified key and its value) from the Map object:

remove (ticketMap, 'NZ1452');

values(ticketMap)
ans =
Columns 1 through 3
‘dames Enright' ‘Patricia Hughes' 'Susan Spera'
Columns 4 through 5
‘Sarah Latham' ‘Carl Haynes'

Modifying Values

You can modify any value in a Map simply by overwriting the current value.
The passenger holding ticket A479GY is identified as Sarah Latham:

ticketMap('A479GY")

ans =
Sarah Latham

Change the passenger’s first name to Anna Latham by overwriting the original
value for the A479GY key:

ticketMap('A479GY') = 'Anna Latham';

Verify the change:

ticketMap('A479GY")
ans =
"Anna Latham';

1-161

1 Classes (Data Types)

1-162

Modifying Keys

To modify an existing key while keeping the value the same, first remove
both the key and its value from the Map. Then create a new entry, this time
with the corrected key name.

Modify the ticket number belonging to passenger James Enright:

remove (ticketMap, '2R175');
ticketMap('2S185') = 'James Enright';

k = keys(ticketMap); v = values(ticketMap);
str1 = ''%s'' has been assigned a new\n';
str2 = ticket number: %s.\n';

fprintf(str1, v{1})
fprintf(str2, k{1})

‘James Enright' has been assigned a new
ticket number: 25185.

Modifying a Copy of the Map

Because ticketMap is a handle object, you need to be careful when making
copies of the Map. Keep in mind that by copying a Map object, you are really
just creating another handle to the same object. Any changes you make to
this handle are also applied to the original Map.

Make a copy of Map ticketMap. Write to this copy, and notice that the change
1s applied to the original Map object itself:

copiedMap = ticketMap;

copiedMap('AZ12345') = 'unidentified person';
ticketMap('AZ12345")
ans =

unidentified person

Clean up:

remove (ticketMap, 'AZ12345');

Map Containers

clear copiedMap;

Mapping to Different Value Types

It is fairly common to store other classes, such as structures or cell arrays, in
a Map structure. However, Maps are most memory efficient when the data
stored in them belongs to one of the basic MATLAB types such as double,
char, integers, and logicals.

Mapping to a Structure Array

The following example maps airline seat numbers to structures that contain
information on who occupies the seat. To start out, create the following
structure array:

s
s
s2.
s2.
s3.
s3.
s4.
s4.
s5.
s5.

.ticketNum = '2S185'; si.destination
.reserved = '06-May-2008'; s1.origin

ticketNum = '947F4'; s2.destination
reserved = '14-Apr-2008'; s2.origin

ticketNum = 'A479GY'; s3.destination

reserved = '28-Mar-2008'; s3.origin
ticketNum = 'B7398'; s4.destination
reserved = '30-Apr-2008'; s4.origin

'Barbados';
'La Guardia';
'St. John';
'Oakland';

= 'St. Lucia';
"JFK';
'Granada’;
"JFK';

ticketNum = 'NZ1452'; s5.destination = 'Aruba’;
reserved = '01-May-2008'; s5.origin = 'Denver’;

Map five of the seats to one of these structures:

seatingMap = containers.Map(
{'23F', '15C', '15B', '09C', '12D'},

{s5, s1, s3, s4, s2});

Using this Map object, find information about the passenger, who has
reserved seat 09C:

seatingMap('09C"')

ans

ticketNum: 'B7398'
destination: 'Granada'
reserved: '30-Apr-2008'
origin: 'JFK'

1-163

1 Classes (Data Types)

1-164

seatingMap('15B').ticketNum
ans =
A479GY

Using two Maps together, you can find out the name of the person who has
reserved the seat:

passenger = ticketMap(seatingMap('15B"').ticketNum)
passenger =
Anna Latham

Mapping to a Cell Array

As with structures, you can also map to a cell array in a Map object.
Continuing with the airline example of the previous sections, some of the
passengers on the flight have “frequent flyer” accounts with the airline. Map
the names of these passengers to records of the number of miles they have
used and the number of miles they still have available:

accountMap = containers.Map(
{'Susan Spera', 'Carl Haynes', 'Anna Latham'},
{{247.5, 56.1}, {0, 1342.9}, {24.6, 314.7}});

Use the Map to retrieve account information on the passengers:

name ‘Carl Haynes';
acct = accountMap(name);

fprintf('%s has used %.1f miles on his/her account,\n',
name, acct{1})
fprintf(' and has %.1f miles remaining.\n', acct{2})

Carl Haynes has used 0.0 miles on his/her account,
and has 1342.9 miles remaining.

Combining Unlike Classes

Combining Unlike Classes

In this section...

“Empty Matrices” on page 1-168

“Combining Unlike Integer Types” on page 1-166

“Concatenation Examples” on page 1-168

“Combining Integer and Noninteger Data” on page 1-168

Matrices and arrays can be composed of elements of most any MATLAB data
type as long as all elements in the matrix are of the same type. If you do
include elements of unlike classes when constructing a matrix, MATLAB
converts some elements so that all elements of the resulting matrix are of the
same type. (See Chapter 1, “Classes (Data Types)” for information on any of

the MATLAB classes discussed here.)

Data type conversion is done with respect to a preset precedence of classes.
The following table shows the five classes you can concatenate with an unlike
type without generating an error (that is, with the exception of character

and logical).

TYPE character | integer single double logical
character | character | character | character | character | invalid
integer character | integer integer integer integer
single character | integer single single single
double character | integer single double double
logical invalid integer single double logical

For example, concatenating a double and single matrix always yields a
matrix of type single. MATLAB converts the double element to single to
accomplish this.

1-165

1 Classes (Data Types)

1-166

Combining Unlike Integer Types

If you combine different integer types in a matrix (e.g., signed with unsigned,
or 8-bit integers with 16-bit integers), MATLAB returns a matrix in which all
elements are of one common type. MATLAB sets all elements of the resulting
matrix to the data type of the left-most element in the input matrix. For
example, the result of the following concatenation is a vector of three 16-bit
signed integers:

A = [int16(450) uint8(250) int32(1000000)]

MATLAB also displays a warning to inform you that the result may not be
what you had expected:

A = [int16(450) uint8(250) int32(1000000)];
Warning: Concatenation with dominant (left-most) integer class
may overflow other operands on conversion to return class.

You can disable this warning by entering the following two commands directly
after the operation that caused the warning. The first command retrieves
the message identifier associated with the most recent warning issued by
MATLAB. The second command uses this identifier to disable any further
warnings of that type from being issued:

[msg, intcat_msgid] = lastwarn;
warning('off', intcat_msgid);

To reenable the warning so that it will now be displayed, use
warning(‘'on', intcat_msgid);

You can use these commands to disable or enable the display of any MATLAB
warning.

Example of Combining Unlike Integer Sizes

After disabling the integer concatenation warnings as shown above,
concatenate the following two numbers once, and then switch their order. The
return value depends on the order in which the integers are concatenated.
The left-most type determines the data type for all elements in the vector:

A = [int16(5000) int8(50)]

Combining Unlike Classes

A =

5000 50
B = [int8(50) int16(5000)]
B =

50 127
The first operation returns a vector of 16-bit integers. The second returns a
vector of 8-bit integers. The element int16(5000) is set to 127, the maximum

value for an 8-bit signed integer.

The same rules apply to vertical concatenation:

C = [int8(50); int16(5000)]
C =

50

127

Note You can find the maximum or minimum values for any MATLAB
integer type using the intmax and intmin functions. For floating-point types,
use realmax and realmin.

Example of Combining Signed with Unsigned

Now do the same exercise with signed and unsigned integers. Again, the
left-most element determines the data type for all elements in the resulting
matrix:

A = [int8(-100) uint8(100)]
A =
-100 100

= [uint8(100) int8(-100)]

100 0

B
B

The element int8(-100) is set to zero because it is no longer signed.

1-167

1 Classes (Data Types)

1-168

MATLAB evaluates each element prior to concatenating them into a combined
array. In other words, the following statement evaluates to an 8-bit signed
integer (equal to 50) and an 8-bit unsigned integer (unsigned -50 is set to
zero) before the two elements are combined. Following the concatenation, the
second element retains its zero value but takes on the unsigned int8 type:

A = [int8(50), uint8(-50)]
A =
50 0

Combining Integer and Noninteger Data

If you combine integers with double, single, or logical classes, all elements
of the resulting matrix are given the data type of the left-most integer. For
example, all elements of the following vector are set to int32:

A = [true pi int32(1000000) single(17.32) uint8(250)]

Empty Matrices

If you construct a matrix using empty matrix elements, the empty matrices
are ignored in the resulting matrix:

A = [5.36; 7.01; []; 9.44]
A:

5.3600

7.0100

9.4400

Concatenation Examples
Here are some examples of data type conversion during matrix construction.

Combining Single and Double Types

Combining single values with double values yields a single matrix. Note
that 5.73*107300 is too big to be stored as a single, thus the conversion from
double to single sets it to infinity. (The class function used in this example
returns the data type for the input value).

X = [single(4.5) single(-2.8) pi 5.73*10"300]
X:
4.5000 -2.8000 3.1416 Inf

Combining Unlike Classes

class(x) % Display the data type of x
ans =
single

Combining Integer and Double Types

Combining integer values with double values yields an integer matrix. Note
that the fractional part of pi is rounded to the nearest integer. (The int8
function used in this example converts its numeric argument to an 8-bit
integer).

X = [int8(21) int8(-22) int8(23) pi 45/6]
X:
21 -22 23 3 7
class(x)
ans =
int8

Combining Character and Double Types

Combining character values with double values yields a character matrix.
MATLAB converts the double elements in this example to their character
equivalents:

x =['A" 'B'" 'C' 68 69 70]
X:
ABCDEF

class(x)

ans =
char

1-169

1 Classes (Data Types)

1-170

Combining Logical and Double Types
Combining logical values with double values yields a double matrix.

MATLAB converts the logical true and false elements in this example to
double:

x = [true false false pi sqrt(7)]
X:
1.0000 0 0 3.1416 2.6458
class(x)
ans =
double

Defining Your Own Classes

Defining Your Own Classes

All MATLAB data types are implemented as object-oriented classes. You
can add data types of your own to your MATLAB environment by creating
additional classes. These user-defined classes define the structure of your
new data type, and the functions, or methods, that you write for each class
define the behavior for that data type.

These methods can also define the way various MATLAB operators, including
arithmetic operations, subscript referencing, and concatenation, apply to the
new data types. For example, a class called polynomial might redefine the
addition operator (+) so that it correctly performs the operation of addition
on polynomials.

With MATLAB classes you can

® (Create methods that override existing MATLAB functionality
e Restrict the operations that are allowed on an object of a class

e Enforce common behavior among related classes by inheriting from the
same parent class

® Significantly increase the reuse of your code

Read more about MATLAB classes in the MATLAB Classes and
Object-Oriented Programming documentation.

1-171

1 Classes (Data Types)

1-172

Basic Program Components

o “MATLAB Commands” on page 2-2

¢ “Expressions” on page 2-6

® “Variables” on page 2-8

e “Keywords” on page 2-19

® “Special Values” on page 2-20

® “Operators” on page 2-22

* “Comma-Separated Lists” on page 2-33

® “Program Control Statements” on page 2-41
¢ “Dates and Times” on page 2-50

e “Regular Expressions” on page 2-57

* “Symbol Reference” on page 2-119

2 Basic Program Components

MATLAB Commands

In this section...

“Basic Command Syntax” on page 2-2

“Entering More Than One Command on a Line” on page 2-3
“Assigning to Multiple Outputs” on page 2-3

“Commands that Call MATLAB Functions” on page 2-5

Basic Command Syntax
A simple MATLAB command computes the result of the expression to the

right of the equals sign and assigns the value of the result to the output
variable at the left. Examples of simple MATLAB commands are

X = 5.71;
A=1[123; 456; 7 8 9];
I besseli(nu, Z);

Commands that do not terminate with a semicolon display the result at your
terminal as well as assigning it to the output variable:

A=1[1223; 456; 78 9]
A =

1 2 3

4 5 6

7 8 9

If you do not explicitly assign the output of a command to a variable, MATLAB
assigns the result to the reserved word ans:

[123; 456; 78 9]

ans =
1 2 3
4 5 6
7 8 9

MATLAB® Commands

The value of ans changes with every command that returns an output value
that is not assigned to a variable. We recommend that you do not use ans
in place of variables as this practice tends to lead to code that is difficult

to maintain and also to programming errors. The following use of ans, for
example, is not recommended:

rand(3,5);
A = ans > 0.5;

Entering More Than One Command on a Line

You can enter more than one command on the same line, provided that you
terminate each command with a comma or semicolon. Commands terminated
with a comma display their results when they are executed; commands
terminated with a semicolon do not:

rand('state', 0);

A = rand(3,5), B = ones(3,5) * 4.7; C=A./B
A:
0.9501 0.4860 0.4565 0.4447 0.9218
0.2311 0.8913 0.0185 0.6154 0.7382
0.6068 0.7621 0.8214 0.7919 0.1763
C:
0.2022 0.1034 0.0971 0.0946 0.1961
0.0492 0.1896 0.0039 0.1309 0.1571

0.1291 0.1621 0.1748 0.1685 0.0375

Assigning to Multiple Outputs

When a command generates more than one output, specify each output in
square brackets to the left of the equals (=) sign. For example, the deal
function distributes the values of each of its inputs to separate output
variables:

[A, B, C] = deal([-12.3 4.89 -3.01], pi*1.46, diag(12:4:24))
A =

-12.3000 4.8900 -3.0100

4.5867

12 0 0 0

2-3

2 Basic Program Components

2-4

0 16 0 0
0 0 20 0
0 0 0 24

Other types of commands that can yield multiple outputs are assignments
of structure and cell arrays, and calls to multiple-output functions. This
example generates four outputs and assigns them to separate variables:

A(1).sym="H"'; A(2).sym='He'; A(3).sym='Li'; A(4).sym='Be';
[hydrogen helium lithium beryllium] = A.sym

hydrogen =
H
helium =
He
lithium =
Li
beryllium =
Be

This example calls the fileparts function that returns several outputs, and
assigns each output to a variable:

[path file exten] = ...
fileparts('C:\matlab\work\strarray.mat')

path
C:
file
strarray
exten =
.mat

matlab\work

=1

For more information on assigning structure and cell arrays to multiple
outputs, see “Assigning Struct Values to Separate Variables” on page 1-84
and “Assigning Cell Values to Separate Variables” on page 1-116.

For information on assigning functions to multiple outputs, see “Assigning
Output Arguments” on page 3-43.

MATLAB® Commands

Assigning Fewer Than the Full Number of Outputs

When assigning structure and cell arrays or when calling multiple-output
functions, if you specify fewer output variables than there are return values,
MATLAB assigns one return value to each output variable specified and
discards the rest. Repeat the last two examples shown above, but specify
fewer than the full number of outputs that are available:

[Symbol_1 Symbol 2] = A.symb
Symbol 1 =

H
Symbol_2 =

He

[path file] = fileparts('..\work\strarray.mat')
path =

C:\matlab\work
file =

strarray

The deal function , however, does require that you specify the full number of
output variables.

Commands that Call MATLAB Functions

When entering commands that call functions in MATLAB, you can use either
of two syntaxes: command or function syntax. This is explained in the section
“Command vs. Function Syntax” on page 3-27 in the MATLAB Programming
Fundamentals documentation.

2 Basic Program Components

2-6

Expressions

In this section...

“String Evaluation” on page 2-6

“Shell Escape Functions” on page 2-7

String Evaluation

String evaluation adds power and flexibility to the MATLAB language, letting
you perform operations like executing user-supplied strings and constructing
executable strings through concatenation of strings stored in variables.

eval

The eval function evaluates a string that contains a MATLAB expression,
statement, or function call. In its simplest form, the eval syntax is

eval('string')

For example, this code uses eval on an expression to generate a Hilbert
matrix of order n.

t="1/(m+n-1)";

for m = 1:k
for n = 1:Kk

a(m,n) = eval(t);
end

end

Here is an example that uses eval on a statement.
eval('t = clock');

Constructing Strings for Evaluation. You can concatenate strings to create
a complete expression for input to eval. This code shows how eval can create
10 variables named P1, P2, ..., P10, and set each of them to a different value.

for n = 1:10
eval(['P', int2str(n), '=n .” 2'])

Expressions

end

Shell Escape Functions

It is sometimes useful to access your own C or Fortran programs using shell
escape functions. Shell escape functions use the shell escape command ! to
make external stand-alone programs act like new MATLAB functions. A
shell escape function

1 Saves the appropriate variables on disk.

2 Runs an external program (which reads the data file, processes the data,
and writes the results back out to disk).

3 Loads the processed file back into the workspace.

For example, look at the code for garfield.m, below. This function uses an
external function, gareqn, to find the solution to Garfield’s equation.

function y = garfield(a,b,q,r)
save gardata a b q r

lgareqgn

load gardata

This file

1 Saves the input arguments a, b, g, and r to a MAT-file in the workspace
using the save command.

2 Uses the shell escape operator to access a C or Fortran program called
garegn that uses the workspace variables to perform its computation.
garegn writes its results to the gardata MAT-file.

3 Loads the gardata MAT-file described in “Using MAT-Files” to obtain
the results.

2-7

2 Basic Program Components

Variables

In this section...

“Types of Variables” on page 2-8

“Naming Variables” on page 2-12
“Guidelines to Using Variables” on page 2-16
“Scope of a Variable” on page 2-16

“Lifetime of a Variable” on page 2-18

Types of Variables

A MATLAB variable is essentially a tag that you assign to a value while that
value remains in memory. The tag gives you a way to reference the value in
memory so that your programs can read it, operate on it with other data,
and save it back to memory.

MATLAB provides three basic types of variables:

® “Local Variables” on page 2-8
® “Global Variables” on page 2-9

® “Persistent Variables” on page 2-11

Local Variables

Each MATLAB function has its own local variables. These are separate from
those of other functions (except for nested functions), and from those of the
base workspace. Variables defined in a function do not remain in memory from
one function call to the next, unless they are defined as global or persistent.

Scripts, on the other hand, do not have a separate workspace. They store their
variables in a workspace that is shared with the caller of the script. When
called from the command line, they share the base workspace. When called
from a function, they share that function’s workspace.

Variables

Note If you run a script that alters a variable that already exists in the
caller’s workspace, that variable is overwritten by the script.

Global Variables

If several functions, and possibly the base workspace, all declare a particular
name as global, then they all share a single copy of that variable. Any
assignment to that variable, in any function, is available to all the other
functions declaring it global.

Suppose, for example, you want to study the effect of the interaction
coefficients, a and B, in the Lotka-Volterra predator-prey model.

¥{= ¥y ¥
Yo=—¥at E’}'L}'g
Create a program file, lotka.m.

function yp = lotka(t,y)

%SLOTKA Lotka-Volterra predator-prey model.

global ALPHA BETA

yp = [y(1) - ALPHA*y(1)*y(2); -y(2) + BETA*y(1)*y(2)];

Then interactively enter the statements

global ALPHA BETA

ALPHA = 0.01
BETA = 0.02

[t,y] = ode23(@lotka,[0,10],[1; 1]);
plot(t,y)

The two global statements make the values assigned to ALPHA and BETA at
the command prompt available inside the function defined by lotka.m. They
can be modified interactively and new solutions obtained without editing
any files.

2-9

2 Basic Program Components

2-10

Creating Global Variables. Each function that uses a global variable
must first declare the variable as global. It is usually best to put global
declarations toward the beginning of the function. You would declare global
variable MAXLEN as follows:

global MAXLEN

If the file contains subfunctions as well, then each subfunction requiring
access to the global variable must declare it as global. To access the variable
from the MATLAB command line, you must declare it as global at the
command line.

MATLAB global variable names are typically longer and more descriptive
than local variable names, and often consist of all uppercase characters. These
are not requirements, but guidelines to increase the readability of MATLAB
code, and to reduce the chance of accidentally redefining a global variable.

Displaying Global Variables. To see only those variables you have
declared as global, use the who or whos functions with the literal, global.

global MAXLEN MAXWID
MAXLEN = 36; MAXWID = 78;
len = 5; wid = 21;

whos global

Name Size Bytes Class
MAXLEN 1x1 8 double array (global)
MAXWID 1x1 8 double array (global)

Grand total is 2 elements using 16 bytes

Suggestions for Using Global Variables. A certain amount of risk is
associated with using global variables and, because of this, it is recommended
that you use them sparingly. You might, for example, unintentionally give

a global variable in one function a name that is already used for a global
variable in another function. When you run your application, one function
may overwrite the variable used by the other. This error can be difficult to
track down.

Variables

Another problem comes when you want to change the variable name. To
make a change without introducing an error into the application, you must
find every occurrence of that name in your code (and other people’s code, if
you share functions).

Alternatives to Using Global Variables. Instead of using a global
variable, you may be able to

® Pass the variable to other functions as an additional argument. In this
way, you make sure that any shared access to the variable is intentional.

If this means that you have to pass a number of additional variables,
you can put them into a structure or cell array and just pass it as one
additional argument.

e Use a persistent variable (described in the next section), if you only need to
make the variable persist in memory from one function call to the next.

Persistent Variables
Characteristics of persistent variables are

® You can declare and use them in functions only.
¢ Only the function in which the variables are declared is allowed access to it.
e MATLAB does not clear them from memory when the function exits, so

their value is retained from one function call to the next.

You must declare persistent variables before you can use them in a function.
It is usually best to put your persistent declarations toward the beginning of
the function. You would declare persistent variable SUM_X as follows:

persistent SUM_X
If you clear a function that defines a persistent variable (i.e., using clear
functionname or clear all), or if you edit the file for that function, MATLAB

clears all persistent variables used in that function.

You can use the mlock function to keep a file from being cleared from memory,
thus keeping persistent variables in the file from being cleared as well.

2-11

2 Basic Program Components

2-12

Initializing Persistent Variables. When you declare a persistent variable,
MATLAB initializes its value to an empty matrix, []. After the declaration
statement, you can assign your own value to it. This is often done using an
isempty statement, as shown here:

function findSum(inputvalue)
persistent SUM_X

if isempty (SUM_X)
SUM_X = 0;
end
SUM_X = SUM_X + inputvalue

This initializes the variable to O the first time you execute the function, and
then it accumulates the value on each iteration.

Naming Variables

MATLAB variable names must begin with a letter, which may be followed by
any combination of letters, digits, and underscores. MATLAB distinguishes
between uppercase and lowercase characters, so A and a are not the same
variable.

Although variable names can be of any length, MATLAB uses only the first
N characters of the name, (where N is the number returned by the function
namelengthmax), and ignores the rest. Hence, it is important to make
each variable name unique in the first N characters to enable MATLAB to
distinguish variables.

N = namelengthmax
N =
63

The genvarname function can be useful in creating variable names that are
both valid and unique. See the genvarname reference page to find out how to
do this.

Variables

Verifying a Variable Name

You can use the isvarname function to make sure a name is valid before you
use it. isvarname returns 1 if the name is valid, and 0 otherwise.

isvarname 8th_column
ans =
0 % Not valid - begins with a number

Avoid Using Function Names for Variables

When naming a variable, make sure you are not using a name that is already
used as a function name, either one of your own functions or one of the
functions in the MATLAB language. If you define a variable with a function
name, you will not be able to call that function until you either remove the
variable from memory with the clear function, or invoke the function using
builtin.

For example, if you enter the following command, you will not be able to use
the MATLAB disp function until you clear the variable with clear disp.

disp = 50;

To test whether a proposed variable name is already used as a function
name, use

which -all variable name

Potential Conflict with Function Names

There are some MATLAB functions that have names that are commonly used
as variable names in programming code. A few examples of such functions
are i, j, mode, char, size, and path.

If you need to use a variable that is also the name of a MATLAB function,
and have determined that you have no need to call the function, you should
be aware that there is still a possibility for conflict. See the following two
examples:

® “Variables Loaded From a MAT-File” on page 2-14

® “Variables In Evaluation Statements” on page 2-15

2-13

2 Basic Program Components

2-14

Variables Loaded From a MAT-File. The function shown below loads
previously saved data from MAT-file settings.mat. It is supposed to display
the value of one of the loaded variables, mode. However, mode is also the
name of a MATLAB function and, in this case, MATLAB interprets it as the
function and not the variable loaded from the MAT-file:

function show_mode

load settings;

whos mode

fprintf('Mode is set to %s\n', mode)

Assume that mode already exists in the MAT-file. Execution of the function
shows that, even though mode is successfully loaded into the function
workspace as a variable, when MATLAB attempts to operate on it in the last
line, it interprets mode as a function. This results in an error:

show_mode
Name Size Bytes Class
mode 1x6 12 char array

Grand total is 6 elements using 12 bytes

??? Error using ==> mode
Not enough input arguments.

Error in ==> show_mode at 4
fprintf('Mode is set to %s\n', mode)

Because MATLAB parses functions before they are run, it needs to determine
before runtime which identifiers in the code are variables and which are
functions. The function in this example does not establish mode as a variable
name and, as a result, MATLAB interprets it as a function name instead.

There are several ways to make this function work as intended without
having to change the variable name. Both indicate to MATLAB that the name
represents a variable, and not a function:

® Name the variable explicitly in the 1oad statement:

function show_mode

Variables

load settings mode;
whos mode
fprintf('Mode is set to %s\n', mode)

¢ Initialize the variable (e.g., set it to an empty matrix or empty string) at
the start of the function:

function show_mode

mode = '';

load settings;

whos mode

fprintf('Mode is set to %s\n', mode)

Variables In Evaluation Statements. Variables used in evaluation
statements such as eval, evalc, and evalin can also be mistaken for function

names. The following file defines a variable named length that conflicts with
MATLAB length function:

function find_area
eval('length = 12; width = 36;"');
fprintf('The area is %d\n', length .* width)

The second line of this code would seem to establish 1length as a variable name
that would be valid when used in the statement on the third line. However,
when MATLAB parses this line, it does not consider the contents of the string
that is to be evaluated. As a result, MATLAB has no way of knowing that
length was meant to be used as a variable name in this program, and the
name defaults to a function name instead, yielding the following error:

find_area
??? Error using ==> length
Not enough input arguments.

To force MATLAB to interpret length as a variable name, use it in an explicit
assignment statement first:

function find_area

length = [];

eval('length = 12; width = 36;"');
fprintf('The area is %d\n', length .* width)

2-15

2 Basic Program Components

2-16

Guidelines to Using Variables

The same guidelines that apply to MATLAB variables at the command line
also apply to variables in your program files:

® You do not need to type or declare variables used in MATLAB program files
(with the possible exception of designating them as global or persistent).

® Before assigning one variable to another, you must be sure that the
variable on the right-hand side of the assignment has a value.

* Any operation that assigns a value to a variable creates the variable, if
needed, or overwrites its current value, if it already exists.

Scope of a Variable

MATLAB stores variables in a part of memory called a workspace. The base
workspace holds variables created during your interactive MATLAB session
and also any variables created by running scripts. Variables created at the
MATLAB command prompt can also be used by scripts without having to
declare them as global.

Functions do not use the base workspace. Every function has its own
function workspace. Each function workspace is kept separate from the base
workspace and all other workspaces to protect the integrity of the data used
by that function. Even subfunctions that are defined in the same file have a
separate function workspace.

Extending Variable Scope

In most cases, variables created within a function are known only within that
function. These variables are not available at the MATLAB command prompt
or to any other function or subfunction.

Passing Variables from Another Workspace. The most secure way to
extend the scope of a function variable is to pass it to other functions as an
argument in the function call. Since MATLAB passes data only by value,
you also need to add the variable to the return values of any function that
modifies its value.

Variables

Evaluating in Another Workspace Using evalin. Functions can also
obtain variables from either the base or the caller’s workspace using the
evalin function. The example below, compareAB_1, evaluates a command in
the context of the MATLAB command line, taking the values of variables A
and B from the base workspace.

Define A and B in the base workspace:

A =13 25 82 68 9 15 77]; B = [63 21 71 42 30 15 22];

Use evalin to evaluate the command A(find (A<=B)) in the context of the
MATLAB base workspace:

function C = compareAB_1
C = evalin('base', 'A(find(A<=B))"');

Call the function. You do not have to pass the variables because they are
made available to the function via the evalin function:

C = compareAB_1
C =
13 9 15

You can also evaluate in the context of the caller’s workspace by specifying
'caller' (instead of 'base') as the first input argument to evalin.

Using Global Variables. A third way to extend variable scope is to declare
the variable as global within every function that needs access to it. If you
do this, you need make sure that no functions with access to the variable
overwrite its value unintentionally. For this reason, it is recommended that
you limit the use of global variables.

Create global vectors A and B in the base workspace:

global A
global B
A= [13 256 82 68 9 15 77]; B = [63 21 71 42 30 15 22];

Also declare them in the function to be called:

function C = compareAB_2
global A

2-17

2 Basic Program Components

2-18

global B
C = A(find(A<=B));

Call the function. Again, you do not have to pass A and B as arguments to the
called function:

C
C =

compareAB_2

13 9 15

Scope in Nested Functions

Variables within nested functions are accessible to more than just their
immediate function. As a general rule, the scope of a local variable is the
largest containing function body in which the variable appears, and all
functions nested within that function. For more information on nested
functions, see “Variable Scope in Nested Functions” on page 4-19.

Lifetime of a Variable

Variables created at the MATLAB command prompt or in a script exist until
you clear them or end your MATLAB session. Variables in functions exist
only until the function completes unless they have been declared as global or
persistent.

Keywords

Keywords

The MATLAB software reserves certain words for its own use as keywords of
the language. To list the keywords, type

iskeyword

ans =
'break’
‘case’
‘catch’

See the online function reference pages to learn how to use these keywords.

You should not use MATLAB keywords other than for their intended purpose.
For example, a keyword should not be used as follows:

while = 5;
??? while = 5;

Error: Expected a variable, function, or constant, found "="

2-19

2 Basic Program Components

2-20

Special Values

Several functions return important special values that you can use in your

own program files.

Function

Return Value

ans

Most recent answer (variable). If you do not assign
an output variable to an expression, MATLAB
automatically stores the result in ans.

eps

Floating-point relative accuracy. This is the
tolerance the MATLAB software uses in its
calculations.

intmax

Largest 8-, 16-, 32-, or 64-bit integer your computer
can represent.

intmin

Smallest 8-, 16-, 32-, or 64-bit integer your
computer can represent.

realmax

Largest floating-point number your computer can
represent.

realmin

Smallest positive floating-point number your
computer can represent.

pi

3.1415926535897. ..

i,]

Imaginary unit.

inf

Infinity. Calculations like n/0, where n is any
nonzero real value, result in inf.

NaN

Not a Number, an invalid numeric value.
Expressions like 0/0 and inf/inf result in a NaN,
as do arithmetic operations involving a NaN. Also, if
n is complex with a zero real part, then n/0 returns
a value with a NaN real part.

computer

Computer type.

version

MATLAB version string.

Special Values

Here are some examples that use these values in MATLAB expressions.

X
X =
6.2832

2 * pi

A = [3+2i 7-8i]
A =
3.0000 + 2.0000i 7.0000 - 8.0000i

tol
tol

3 * eps

6.6613e-016
intmax('uint64"')

ans =
18446744073709551615

2-21

2 Basic Program Components

2-22

Operators

In this section...

“Arithmetic Operators” on page 2-22
“Relational Operators” on page 2-23
“Logical Operators” on page 2-24

“Operator Precedence” on page 2-31

Arithmetic Operators

Arithmetic operators perform numeric computations, for example, adding two
numbers or raising the elements of an array to a given power. The following
table provides a summary. For more information, see the arithmetic operators
reference page.

Operator | Description

+ Addition

- Subtraction
08 Multiplication
ol Right division
o\ Left division
+ Unary plus

> Unary minus

Colon operator

Power

Transpose

Complex conjugate transpose

t Matrix multiplication
/ Matrix right division
\ Matrix left division

Matrix power

../ref/arithmeticoperators.html

Operators

Arithmetic Operators and Arrays

Except for some matrix operators, MATLAB arithmetic operators work on
corresponding elements of arrays with equal dimensions. For vectors and
rectangular arrays, both operands must be the same size unless one is a
scalar. If one operand is a scalar and the other is not, MATLAB applies
the scalar to every element of the other operand—this property is known
as scalar expansion.

This example uses scalar expansion to compute the product of a scalar
operand and a matrix.

A = magic(3)

A =
8 1 6
3 5 7
4 9 2

3 *A

ans =
24 3 18
9 15 21
12 27 6

Relational Operators

Relational operators compare operands quantitatively, using operators like
“less than” and “not equal to.” The following table provides a summary. For
more information, see the relational operators reference page.

Operator | Description

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to
== Equal to

~= Not equal to

2-23

../ref/relationaloperators.html

2 Basic Program Components

2-24

Relational Operators and Arrays

The MATLAB relational operators compare corresponding elements

of arrays with equal dimensions. Relational operators always operate
element-by-element. In this example, the resulting matrix shows where an
element of A is equal to the corresponding element of B.

A=1[276;905;30.586];
B=1[870;325;4-17];
A ==B
ans =

0 1 0

0 0 1

0 0 0

For vectors and rectangular arrays, both operands must be the same size
unless one is a scalar. For the case where one operand is a scalar and the
other is not, MATLAB tests the scalar against every element of the other
operand. Locations where the specified relation is true receive logical 1.
Locations where the relation is false receive logical 0.

Relational Operators and Empty Arrays

The relational operators work with arrays for which any dimension has size
zero, as long as both arrays are the same size or one is a scalar. However,
expressions such as

A==]

return an error if A is not 0-by-0 or 1-by-1. This behavior is consistent with
that of all other binary operators, such as +, -, >, <, &, |, etc.

To test for empty arrays, use the function

isempty (A)

Logical Operators
MATLAB offers three types of logical operators and functions:

¢ Element-wise — operate on corresponding elements of logical arrays.

Operators

® Bit-wise — operate on corresponding bits of integer values or arrays.
e Short-circuit — operate on scalar, logical expressions.
The values returned by MATLAB logical operators and functions, with the

exception of bit-wise functions, are of type logical and are suitable for use
with logical indexing.

Element-Wise Operators and Functions

The following logical operators and functions perform elementwise logical
operations on their inputs to produce a like-sized output array.

The examples shown in the following table use vector inputs A and B, where

A=[01101];
B=[11001];
Operator | Description Example
& Returns 1 for every element location that is A&B =
true (nonzero) in both arrays, and 0 for all other | 01001
elements.
Returns 1 for every element location that is A | B-=

true (nonzero) in either one or the other, or both | 11101
arrays, and 0 for all other elements.

= Complements each element of the input array, A. | ~A =

10010
xor Returns 1 for every element location that is true | xor(A,B)
(nonzero) in only one array, and 0 for all other = 10100

elements.

For operators and functions that take two array operands, (&, |, and xor),
both arrays must have equal dimensions, with each dimension being the
same size. The one exception to this is where one operand is a scalar and the
other is not. In this case, MATLAB tests the scalar against every element
of the other operand.

2-25

2 Basic Program Components

2-26

Note MATLAB converts any finite nonzero, numeric values used as inputs to
logical expressions to logical 1, or true.

Operator Overloading. You can overload the &, |, and ~ operators to make
their behavior dependent upon the class on which they are being used. Each
of these operators has a representative function that is called whenever that
operator is used. These are shown in the table below.

Logical

Operation Equivalent Function
A&B and (A, B)

A| B or(A, B)

~A not(A)

Other Array Functions. Two other MATLAB functions that operate
logically on arrays, but not in an elementwise fashion, are any and all. These
functions show whether any or all elements of a vector, or a vector within

a matrix or an array, are nonzero.

When used on a matrix, any and all operate on the columns of the matrix.
When used on an N-dimensional array, they operate on the first nonsingleton
dimension of the array. Or, you can specify an additional dimension input to
operate on a specific dimension of the array.

The examples shown in the following table use array input A, where

Operators

Function | Description Example

any (A) Returns 1 for a vector where any element any(A) ans = 0
of the vector is true (nonzero), and 0 if no 11
elements are true.

all(A) Returns 1 for a vector where all elements of | al1(A) ans = 0
the vector are true (nonzero), and 0 if all 10
elements are not true.

Note The all and any functions ignore any NaN values in the input arrays.

Short-Circuiting in Elementwise Operators. When used in the context of
an if or while expression, and only in this context, the elementwise | and &
operators use short-circuiting in evaluating their expressions. That is, A|B
and A&B ignore the second operand, B, if the first operand, A, is sufficient to
determine the result.

So, although the statement 1|[] evaluates to false, the same statement
evaluates to true when used in either an if or while expression:

A=1; B=[];

if (A|B) disp 'The statement is true', end;
The statement is true

while the reverse logical expression, which does not short-circuit, evaluates
to false

if (B|A) disp 'The statement is true', end;

Another example of short-circuiting with elementwise operators shows that a
logical expression such as the following, which under most circumstances is
invalid due to a size mismatch between A and B,

A=1[11]; B=1[201];
A|B % This generates an error.

works within the context of an if or while expression:

if (A|B) disp 'The statement is true', end;

2-27

2 Basic Program Components

2-28

The statement is true

Logical Expressions Using the find Function. The find function
determines the indices of array elements that meet a given logical condition.
The function is useful for creating masks and index matrices. In its most
general form, find returns a single vector of indices. This vector can be used
to index into arrays of any size or shape.

For example,

A = magic(4)

A =
16 2 3 13
5 11 10 8
9 7 6 12
4 14 15 1

i = find(A > 8);

A(i) = 100

A =

100 2 3 100
5 100 100 8
100 7 6 100
4 100 100 1

Note An alternative to using find in this context is to index into the matrix
using the logical expression itself. See the example below.

The last two statements of the previous example can be replaced with this
one statement:

A(A > 8) = 100;

You can also use find to obtain both the row and column indices of a
rectangular matrix for the array values that meet the logical condition:

A
A =

magic(4)

16 2 3 13

Operators

5 11 10 8
9 7 6 12
4 14 15 1

[row, col] = find(A > 12)
row =

- N DN =

col =

A OWON =

Bit-Wise Functions

The following functions perform bit-wise logical operations on nonnegative
integer inputs. Inputs may be scalar or in arrays. If in arrays, these functions
produce a like-sized output array.

The examples shown in the following table use scalar inputs A and B, where

A = 28; % binary 11100
B = 21; % binary 10101
Function Description Example
bitand Returns the bit-wise AND bitand(A,B) = 20 (binary
of two nonnegative integer 10100)
arguments.
bitor Returns the bit-wise OR bitor(A,B) = 29 (binary
of two nonnegative integer 11101)
arguments.

2-29

2 Basic Program Components

Function Description Example
bitcmp Returns the bit-wise bitcmp(A,5) = 3 (binary
complement as an n-bit 00011)

number, where n is the
second input argument to

bitcmp.

bitxor Returns the bit-wise exclusive | bitxor(A,B) = 9 (binary
OR of two nonnegative integer | 01001)
arguments.

Short-Circuit Operators

The following operators perform AND and OR operations on logical
expressions containing scalar values. They are short-circuit operators in
that they evaluate their second operand only when the result is not fully
determined by the first operand.

Operator | Description

&& Returns logical 1 (true) if both inputs evaluate to true, and
logical 0 (false) if they do not.

|| Returns logical 1 (true) if either input, or both, evaluate to
true, and logical 0 (false) if they do not.

The statement shown here performs an AND of two logical terms, A and B:

A && B

If A equals zero, then the entire expression will evaluate to logical 0 (false),
regardless of the value of B. Under these circumstances, there is no need

to evaluate B because the result is already known. In this case, MATLAB
short-circuits the statement by evaluating only the first term.

A similar case is when you OR two terms and the first term is true. Again,

regardless of the value of B, the statement will evaluate to true. There is no
need to evaluate the second term, and MATLAB does not do so.

2-30

Operators

Advantage of Short-Circuiting. You can use the short-circuit operators
to evaluate an expression only when certain conditions are satisfied. For

example, you want to execute a function only if the function file resides on
the current MATLAB path.

Short-circuiting keeps the following code from generating an error when the
file, myfun.m, cannot be found:

comp = (exist('myfun.m') == 2) && (myfun(x) >=vy)
Similarly, this statement avoids divide-by-zero errors when b equals zero:
x = (b ~=0) & (a/b > 18.5)

You can also use the && and | | operators in if and while statements to take
advantage of their short-circuiting behavior:

if (nargin >= 3) && (ischar(varargin{3}))

Operator Precedence

You can build expressions that use any combination of arithmetic, relational,
and logical operators. Precedence levels determine the order in which
MATLAB evaluates an expression. Within each precedence level, operators
have equal precedence and are evaluated from left to right. The precedence
rules for MATLAB operators are shown in this list, ordered from highest
precedence level to lowest precedence level:

1 Parentheses ()

2 Transpose (.'), power (."), complex conjugate transpose ('), matrix
power (*)

3 Unary plus (+), unary minus (-), logical negation (~)

4 Multiplication (.*), right division (./), left division (.\), matrix
multiplication (*), matrix right division (/), matrix left division (\)

5 Addition (+), subtraction (-)

6 Colon operator (:)

2-31

2 Basic Program Components

7 Less than (<), less than or equal to (<=), greater than (>), greater than or
equal to (>=), equal to (==), not equal to (~=)

8 Element-wise AND (&)
9 Element-wise OR ()
10 Short-circuit AND (8&&)

11 Short-circuit OR (| |)

Precedence of AND and OR Operators

MATLAB always gives the & operator precedence over the | operator.
Although MATLAB typically evaluates expressions from left to right, the
expression a|b&c is evaluated as a| (b&c). It is a good idea to use parentheses
to explicitly specify the intended precedence of statements containing
combinations of & and |.

The same precedence rule holds true for the && and | | operators.

Overriding Default Precedence

The default precedence can be overridden using parentheses, as shown in
this example:

A=[395];
B=1[215];
C=A./B."2
C:

0.7500 9.0000 0.2000
C = (A./B)."2
C:

2.2500 81.0000 1.0000

2-32

Comma-Separated Lists

Comma-Separated Lists

In this section...

“What Is a Comma-Separated List?” on page 2-33

“Generating a Comma-Separated List” on page 2-33

“Assigning Output from a Comma-Separated List” on page 2-35
“Assigning to a Comma-Separated List” on page 2-36

“How to Use the Comma-Separated Lists” on page 2-37

“Fast Fourier Transform Example” on page 2-39

What Is a Comma-Separated List?

Typing in a series of numbers separated by commas gives you what is called a
comma-separated list. The MATLAB software returns each value individually:

1, 2, 3
ans =

1
ans =

2
ans =

3

Such a list, by itself, is not very useful. But when used with large and
more complex data structures like MATLAB structures and cell arrays, the
comma-separated list can enable you to simplify your MATLAB code.

Generating a Comma-Separated List

This section describes how to generate a comma-separated list from either a
cell array or a MATLAB structure.

Generating a List from a Cell Array

Extracting multiple elements from a cell array yields a comma-separated list.
Given a 4-by-6 cell array as shown here

2-33

2 Basic Program Components

2-34

C = cell(4, 6);

for k =

(o]

[2]
[4]
[6]
[8]

extracting the fifth column generates the following comma-separated list:

ans

ans =

ans =

ans =

c{:, 5}

1:24,

[10]
[12]
[14]
[16]

C{k} = k

[18]
[20]
[22]
[24]

*2;

[26]
[28]
[30]
[32]

This is the same as explicitly typing

end

[34]
[36]
[38]
[40]

C{1, 5}, C{2, 5}, C{3, 5}, C{4, 5}

Generating a List from a Structure

For structures, extracting a field of the structure that exists across one of its

dimensions yields a comma-separated list.

Start by converting the cell array used above into a 4-by-1 MATLAB structure
with six fields: f1 through f6. Read field 5 for all rows and MATLAB returns

a comma-separated list:

S = cell2struct(C,

S.f5
ans =

ans =

{17,

Ile,

‘f3', 'f4',

[42]
[44]
[46]
[48]

Ifsl,

'f6'}, 2);

Comma-Separated Lists

This is the same as explicitly typing

S(1).f5, S(2).f5, S(3).f5, S(4).f5

Assigning Output from a Comma-Separated List

You can assign any or all consecutive elements of a comma-separated list to
variables with a simple assignment statement. Using the cell array C from
the previous section, assign the first row to variables c¢1 through c6:

C = cell(4, 6);
for k = 1:24, C{k} = k * 2; end

[c1 c2 ¢c3 c4 c5 c6] = C{1,1:6};

c5
c5 =
34

If you specify fewer output variables than the number of outputs returned by
the expression, MATLAB assigns the first N outputs to those N variables, and
then discards any remaining outputs. In this next example, MATLAB assigns
C{1,1:3} to the variables c1, c2, and ¢3, and then discards C{1,4:6}:

[c1 c2 c3] = C{1,1:6};
You can assign structure outputs in the same manner:
S = cell2struct(c, {'f1', 'f2', 'f3', 'f4', 'f5', 'f6'}, 2);
[sf1 sf2 sf3] = S.f5;
sf3

sf3 =
38

2-35

2 Basic Program Components

2-36

You also can use the deal function for this purpose.

Assigning to a Comma-Separated List

The simplest way to assign multiple values to a comma-separated list is to
use the deal function. This function distributes all of its input arguments to
the elements of a comma-separated list.

This example initializes a comma-separated list to a set of vectors in a cell
array, and then uses deal to overwrite each element in the list:

c{1} = [31 07]; c{2} = [03 78];
c{:}
ans =
31 7
ans =
3 78

[c{:}] = deal([10 20],[14 12]);

c{:}
ans =

10 20
ans =

14 12

This example does the same as the one above, but with a comma-separated
list of vectors in a structure field:

s(1).field1 = [31 07]; s(2).field1 = [03 78];

s.field1
ans =
31 7
ans =
3 78

Comma-Separated Lists

[s.field1] = deal([10 20],[14 12]);

s.field1
ans =

10 20
ans =

14 12

How to Use the Comma-Separated Lists
Common uses for comma-separated lists are

¢ “Constructing Arrays” on page 2-37

¢ “Displaying Arrays” on page 2-38

® “Concatenation” on page 2-38

¢ “Function Call Arguments” on page 2-38
¢ “Function Return Values” on page 2-39

The following sections provide examples of using comma-separated lists with
cell arrays. Each of these examples applies to MATLAB structures as well.

Constructing Arrays

You can use a comma-separated list to enter a series of elements when
constructing a matrix or array. Note what happens when you insert a list of
elements as opposed to adding the cell itself.

When you specify a list of elements with C{:, 5}, MATLAB inserts the four
individual elements:

A
A =

{'Hello', C{:, 5}, magic(4)}
'Hello' [34] [36] [38] [40] [4x4 double]

When you specify the C cell itself, MATLAB inserts the entire cell array:

>
I

{'Hello', C, magic(4)}

'Hello' {4x6 cell} [4x4 double]

2-37

2 Basic Program Components

2-38

Displaying Arrays

Use a list to display all or part of a structure or cell array:

A{:}
ans =

Hello
ans =

34
ans =

36
ans =

38

Concatenation
Putting a comma-separated list inside square brackets extracts the specified
elements from the list and concatenates them:

A = [C{:, 5:6}]
A:
34 36 38 40 42 44 46 48
whos A
Name Size Bytes Class
A 1x8 64 double array

Function Call Arguments

When writing the code for a function call, you enter the input arguments as a
list with each argument separated by a comma. If you have these arguments
stored in a structure or cell array, then you can generate all or part of the
argument list from the structure or cell array instead. This can be especially
useful when passing in variable numbers of arguments.

Comma-Separated Lists

This example passes several attribute-value arguments to the plot function:

X = -pi:pi/10:pi;

Y = tan(sin(X)) - sin(tan(X));

C{1,1} = 'LineWidth'; c{2,1} = 2;
C{1,2} = 'MarkerkEdgeColor'; c{2,2} = 'k';
C{1,3} = 'MarkerFaceColor'; c{2,3} = 'g';
plot(X, Y, '--rs', C{:})

Function Return Values

MATLAB functions can also return more than one value to the caller. These
values are returned in a list with each value separated by a comma. Instead
of listing each return value, you can use a comma-separated list with a
structure or cell array. This becomes more useful for those functions that
have variable numbers of return values.

This example returns three values to a cell array:

ell(1, 3);

C c
[C{:}] = fileparts('work/mytests/strArrays.mat')
C

I~ 1

'work/mytests' ‘strArrays’ ‘.mat’

Fast Fourier Transform Example

The fftshift function swaps the left and right halves of each dimension of
an array. For a simple vector such as [0 2 4 6 8 10] the output would be
[6 8 10 0 2 4]. For a multidimensional array, fftshift performs this
swap along each dimension.

fftshift uses vectors of indices to perform the swap. For the vector shown
above, the index [1 2 3 4 5 6] is rearranged to form a new index [4 5 6 1
2 3]. The function then uses this index vector to reposition the elements. For
a multidimensional array, fftshift must construct an index vector for each
dimension. A comma-separated list makes this task much simpler.

Here is the fftshift function:

function y = fftshift(x)

2-39

2 Basic Program Components

2-40

numbDims = ndims(x);
idx = cell(1, numDims);

for k = 1:numDims
m = size(x, Kk);
p = ceil(m/2);
idx{k} = [p+1:m 1:p];
end

y = x(idx{:});

The function stores the index vectors in cell array idx. Building this cell array
is relatively simple. For each of the N dimensions, determine the size of that
dimension and find the integer index nearest the midpoint. Then, construct a
vector that swaps the two halves of that dimension.

By using a cell array to store the index vectors and a comma-separated list
for the indexing operation, fftshift shifts arrays of any dimension using
just a single operation: y = x(idx{:}). If you were to use explicit indexing,
you would need to write one if statement for each dimension you want the
function to handle:

if ndims(x) ==

y = x(index1);
else if ndims(x) == 2

y = x(index1, index2);
end

Another way to handle this without a comma-separated list would be to loop
over each dimension, converting one dimension at a time and moving data
each time. With a comma-separated list, you move the data just once. A
comma-separated list makes it very easy to generalize the swapping operation
to an arbitrary number of dimensions.

Program Control Statements

Program Control Statements

In this section...

“Conditional Control — if, switch” on page 2-41
“Loop Control — for, while, continue, break” on page 2-45
“Error Control — try, catch” on page 2-48

“Program Termination — return” on page 2-49

Conditional Control — if, switch

This group of control statements enables you to select at run-time which block
of code is executed. To make this selection based on whether a condition is
true or false, use the if statement (which may include else or elseif).

To select from a number of possible options depending on the value of

an expression, use the switch and case statements (which may include
otherwise).

You cannot define nested functions within a conditional control block. Nested
functions must always be defined at the top level of a function.

if, else, and elseif

if evaluates a logical expression and executes a group of statements based on
the value of the expression. In its simplest form, its syntax is

if logical expression
statements
end

If the logical expression is true (that is, if it evaluates to logical 1), the
MATLAB software executes all the statements between the if and end lines.
It resumes execution at the line following the end statement. If the condition
1s false (evaluates to logical 0), MATLAB skips all the statements between
the if and end lines, and resumes execution at the line following the end
statement.

For example,

2-41

Basic Program Components

2-42

if rem(a, 2) == 0
disp('a is even')
b =a/2;

end

You can nest any number of if statements.

If the logical expression evaluates to a nonscalar value, all the elements of
the argument must be nonzero. For example, assume X is a matrix. Then
the statement

if X
Statements
end

1s equivalent to

if all(X(:))
statements
end

The else and elseif statements further conditionalize the if statement:

® The else statement has no logical condition. The statements associated
with it execute if the preceding if (and possibly elseif condition)
evaluates to logical 0 (false).

® The elseif statement has a logical condition that it evaluates if the
preceding if (and possibly elseif condition) is false. The statements
associated with it execute if its logical condition evaluates to logical 1
(true). You can have multiple elseif statements within an if block.

ifn<o0 % If n negative, display error message.
disp('Input must be positive');
elseif rem(n,2) == 0 % If n positive and even, divide by 2.
A =n/2;
else
A= (n+t1)/2; % If n positive and odd, increment and divide.
end

if Statements and Empty Arrays. An if condition that reduces to an
empty array represents a false condition. That is,

Program Control Statements

if A
S1

else
SO

end

executes statement SO when A is an empty array.

switch, case, and otherwise

switch executes certain statements based on the value of a variable or
expression. Its basic form is

switch expression (scalar or string)
case valuet

statements % Executes if expression is valuet
case value2

statements % Executes if expression is value2
otherwise

statements % Executes if expression does not

% match any case
end

This block consists of

® The word switch followed by an expression to evaluate.

® Any number of case groups. These groups consist of the word case followed
by a possible value for the expression, all on a single line. Subsequent lines
contain the statements to execute for the given value of the expression.
These can be any valid MATLAB statement including another switch
block. Execution of a case group ends when MATLAB encounters the next
case statement or the otherwise statement. Only the first matching case
is executed.

® An optional otherwise group. This consists of the word otherwise,
followed by the statements to execute if the expression’s value is not
handled by any of the preceding case groups. Execution of the otherwise
group ends at the end statement.

2-43

2 Basic Program Components

2-44

® An end statement.

switch works by comparing the input expression to each case value. For
numeric expressions, a case statement is true if (value==expression). For
string expressions, a case statement is true if strcmp (value,expression).

The code below shows a simple example of the switch statement. It checks
the variable input_num for certain values. If input _numis -1, 0, or 1, the
case statements display the value as text. If input_num is none of these
values, execution drops to the otherwise statement and the code displays the
text 'other value'.

switch input_num
case -1
disp('negative one');
case 0
disp('zero');
case 1
disp('positive one');
otherwise
disp('other value');
end

Note For C programmers, unlike the C language switch construct, the
MATLAB switch does not “fall through.” That is, if the first case statement
is true, other case statements do not execute. Therefore, break statements
are not used.

switch can handle multiple conditions in a single case statement by enclosing
the case expression in a cell array.

switch var
case 1
disp('1')
case {2,3,4}
disp('2 or 3 or 4')
case 5
disp('5"')
otherwise

Program Control Statements

disp('something else')
end

Loop Control — for, while, continue, break

With loop control statements, you can repeatedly execute a block of code,
looping back through the block while keeping track of each iteration with an
incrementing index variable. Use the for statement to loop a specific number
of times. The while statement is more suitable for basing the loop execution
on how long a condition continues to be true or false. The continue and break
statements give you more control on exiting the loop.

You cannot define nested functions within a loop control block. Nested
functions must always be defined at the top level of a function.

Note You can often speed up the execution of MATLAB code by replacing
for and while loops with vectorized code. See “Techniques for Improving
Performance” on page 8-4 for more information on this.

for

The for loop executes a statement or group of statements a predetermined
number of times. Its syntax is

for index = start:increment:end
Statements
end

The default increment is 1. You can specify any increment, including a
negative one. For positive indices, execution terminates when the value of
the index exceeds the end value; for negative increments, it terminates when
the index is less than the end value.

For example, this loop executes five times.
for n = 2:6

Xx(n) =2 * x(n - 1);
end

2-45

2 Basic Program Components

2-46

You can nest multiple for loops.

for m = 1:5
for n = 1:100
A(m, n) =1/(m +n - 1);
end
end

Note You can often speed up the execution of MATLAB code by replacing
for and while loops with vectorized code. See “Vectorizing Loops” on page
8-8 for details.

Using Arrays as Indices. The index of a for loop can be an array. For
example, consider an m-by-n array A. The statement

for k = A
statements
end

sets k equal to the vector A(:,1i), where i is the iteration number of the loop.
For the first loop iteration, k is equal to A(:,1); for the second, k is equal

to A(:,2); and so on until k equals A(:,n). That is, the loop iterates for a
number of times equal to the number of columns in A. For each iteration, k is
a vector containing one of the columns of A.

while

The while loop executes a statement or group of statements repeatedly as
long as the controlling expression is true (1). Its syntax is

while expression
statements
end

If the expression evaluates to a matrix, all its elements must be 1 for
execution to continue. To reduce a matrix to a scalar value, use the all and
any functions.

Program Control Statements

For example, this while loop finds the first integer n for which n! (n factorial)
1s a 100-digit number.

n=1;

while prod(1:n) < 1e100
n=n+H1;

end

Exit a while loop at any time using the break statement.

while Statements and Empty Arrays. A while condition that reduces to
an empty array represents a false condition. That is,

while A, S1, end

never executes statement S1 when A is an empty array.

continue

The continue statement passes control to the next iteration of the for or
while loop in which it appears, skipping any remaining statements in the body
of the loop. In for loops, the loop counter is incremented by the appropriate
value (either 1 or the specified step value) at the start of the next iteration.

continue works the same way in nested loops. That is, execution continues at
the beginning of the loop in which the continue statement was encountered.

The example below shows a continue loop that counts the lines of code in the
file, magic.m, skipping all blank lines and comments. A continue statement
is used to advance to the next line in magic.m without incrementing the count
whenever a blank line or comment line is encountered.

fid = fopen('magic.m','r');
count = 0;
while ~feof (fid)
line = fgetl(fid);
if isempty(line) || strncmp(line,'S',1) || ~ischar(line)
continue
end
count = count + 1;
end

2-47

2 Basic Program Components

fprintf('Ssd lines\n',count);
fclose(fid);

break

The break statement terminates the execution of a for loop or while loop.
When a break statement is encountered, execution continues with the next
statement outside of the loop. In nested loops, break exits from the innermost
loop only.

The example below shows a while loop that reads the contents of the file
fft.m into a MATLAB character array. A break statement is used to exit the
while loop when the first empty line is encountered. The resulting character
array contains the help for the fft program.

fid = fopen('fft.m','r');
S II;

while ~feof (fid)
line = fgetl(fid);

if isempty(line) || ~ischar(line)
break
end
s = sprintf('%s%s\n', s, line);
end
disp(s);
fclose(fid);

Error Control — try, catch

Error control statements provide a way for you to take certain actions in the
event of an error. Use the try statement to test whether certain commands
in your code generates an error. If an error does occur within the try block,
MATLAB immediately jumps to the corresponding catch block. Use the
catch part of the statement to respond in some way to the error.

You cannot define nested functions within a try-catch block. Nested
functions must always be defined at the top level of a function.

2-48

Program Control Statements

try and catch
The general form of a try-catch statement sequence is

try
statement
statement
catch meObj
statement
statement
end
In this sequence, the statements in the try block (that part of the try-catch
that follows the word try statement, and precedes catch) between try and
catch execute just like any other program code. If an error occurs within
the try section The statements between catch and end are then executed.
Examine the contents of the MException object meObj to see the cause of

the error. If an error occurs between catch and end, MATLAB terminates
execution unless another try-catch sequence has been established.

Program Termination — return

Program termination control enables you to exit from your program at some
point prior to its normal termination point.

return

After a MATLAB function runs to completion, it terminates and returns
control either to the function that called it, or to the keyboard. If you need to
exit a function prior to the point of normal completion, you can force an early
termination using the return function. return immediately terminates the
current sequence of commands and exits the currently running function.

return is also used to terminate keyboard mode.

2-49

2 Basic Program Components

Dates and Times

In this section...

“Overview” on page 2-50

“Types of Date Formats” on page 2-50
“Conversions Between Date Formats” on page 2-52
“Date String Formats” on page 2-53

“Output Formats” on page 2-54

“Current Date and Time” on page 2-54

“Function Summary” on page 2-55

Overview

The MATLAB software represents date and time information in either of
three formats: date strings, serial date numbers, or date vectors. You have
the choice of using any of these formats. If you work with more than one date
and time format, MATLAB provides functions to help you easily convert from
one format to another, (e.g., from a string to a serial date number).

When using date strings, you have an additional option of choosing from 19
different string styles to express date and/or time information.

Types of Date Formats
The three MATLAB date and time formats are

e “Date Strings” on page 2-51
e “Serial Date Numbers” on page 2-51
e “Date Vectors” on page 2-52

This table shows examples of the three formats.

2-50

Dates and Times

Date Format Example

Date string 02-0ct-1996
Serial date number 729300

Date vector 1996 10 2 0 0 O

Date Strings

There are a number of different styles in which to express date and time
information as a date string. For example, several possibilities for October 31,
2003 at 3:45:17 in the afternoon are

31-0ct-2003 15:45:17
10/31/03

15:45:17

03:45:17 PM

If you are working with a small number of dates at the MATLAB command
line, then date strings are often the most convenient format to use.

Note The MATLAB date function returns the current date as a string.

Serial Date Numbers

A serial date number represents a calendar date as the number of days that
has passed since a fixed base date. In MATLAB, serial date number 1 is
January 1, 0000. MATLAB also uses serial time to represent fractions of days
beginning at midnight; for example, 6 p.m. equals 0.75 serial days. So the
string ’31-Oct-2003, 6:00 pm’ in MATLAB is date number 731885.75.

MATLAB works internally with serial date numbers. If you are using
functions that handle large numbers of dates or doing extensive calculations
with dates, you get better performance if you use date numbers.

Note The MATLAB now function returns the current date and time as a
serial date number.

2-51

2 Basic Program Components

2-52

Date Vectors

Date vectors are an internal format for some MATLAB functions; you do not
typically use them in calculations. A date vector contains the elements [year
month day hour minute second].

Note The MATLAB clock function returns the current date and time as a
serial vector.

Conversions Between Date Formats
Functions that convert between date formats are shown below.

Function Description

datenum Convert a date string to a serial date number.

datestr Convert a serial date number to a date string.

datevec Split a date number or date string into individual
date elements.

Here are some examples of conversions from one date format to another:

di1
d1

datenum('02-0ct-1996"')

729300

d2 = datestr(d1 + 10)
d2 =
12-0ct-1996

dvi = datevec(d1)
dvi =
1996 10 2 0 0 0

dv2 = datevec(d2)
dv2 =
1996 10 12 0 0 0

Dates and Times

Date String Formats

The datenum function is important for doing date calculations efficiently.
datenum takes an input string in any of several formats, with 'dd-mmm-yyyy',
'mm/dd/yyyy', or 'dd-mmm-yyyy, hh:mm:ss.ss' most common. You can
form up to six fields from letters and digits separated by any other characters:

¢ The day field is an integer from 1 to 31.

¢ The month field is either an integer from 1 to 12 or an alphabetic string
with at least three characters.

¢ The year field is a nonnegative integer: if only two digits are specified,
then a year 19yy is assumed; if the year is omitted, then the current year
is used as a default.

¢ The hours, minutes, and seconds fields are optional. They are integers
separated by colons or followed by 'AM' or 'PM'.

For example, if the current year is 1996, then these are all equivalent:

'17-May-1996'"
'17-May-96'
"17-May'

'May 17, 1996'
'5/17/96'
'5/17'

and both of these represent the same time:

'17-May-1996, 18:30"
'5/17/96/6:30 pm'

Note that the default format for numbers-only input follows the American
convention. Thus 3/6 is March 6, not June 3.

If you create a vector of input date strings, use a column vector and be sure all
strings are the same length. Fill in with spaces or zeros.

2-53

2 Basic Program Components

Output Formats

The command datestr (D, dateform) converts a serial date D to one of 31
different date string output formats showing date, time, or both. The default
output for dates is a day-month-year string: 01-Mar-1996. You select an
alternative output format by using the optional integer argument dateform.

See the Standard MATLAB Date Format Definitions table for the date string
formats that correspond to each dateform value.

Converting Output Format with datestr

Here are some examples of converting the date March 1, 1996 to various
forms using the datestr function:

d = '01-Mar-1999'
d:
01-Mar-1999

datestr(d)
ans =
01-Mar-1999

datestr(d, 2)
ans =
03/01/99

datestr(d, 17)
ans =
Q1-99

Current Date and Time
The function date returns a string for today’s date:

date
ans =
02-0ct-1996

The function now returns the serial date number for the current date and time:

now

2-54

Dates and Times

ans =

729300.71
datestr(now)
ans =

02-0ct-1996 16:56:16

datestr(floor(now))
ans =
02-0ct-1996

Function Summary
MATLAB provides the following functions for time and date handling:

¢ Current Date and Time Functions on page 2-55
¢ Conversion Functions on page 2-55
e Utility Functions on page 2-56

¢ Timing Measurement Functions on page 2-56

Current Date and Time Functions

Function Description

clock Return the current date and time as a date vector.

date Return the current date as date string.

now Return the current date and time as serial date number.

Conversion Functions

Function Description

datenum Convert to a serial date number.

datestr Convert to a string representation of the date.
datevec Convert to a date vector.

2-55

2 Basic Program Components

2-56

Utility Functions

Function Description

addtodate Modify a date number by field.

calendar Return a matrix representing a calendar.
datetick Label axis tick lines with dates.

eomday Return the last day of a year and month.
weekday Return the current day of the week.

Timing Measurement Functions

Function Description

cputime Return the total CPU time used by MATLAB since it
was started.

etime Return the time elapsed between two date vectors.

tic, toc Measure the time elapsed between invoking tic and toc.

Regular Expressions

Regular Expressions

In this section...

“Overview” on page 2-57

“Calling Regular Expression Functions from MATLAB” on page 2-59
“Parsing Strings with Regular Expressions” on page 2-63
“Other Benefits of Using Regular Expressions” on page 2-67
“Metacharacters and Operators” on page 2-68

“Character Type Operators” on page 2-69

“Character Representation” on page 2-73

“Grouping Operators” on page 2-74

“Nonmatching Operators” on page 2-76

“Positional Operators” on page 2-77

“Lookaround Operators” on page 2-78

“Quantifiers” on page 2-84

“Tokens” on page 2-87

“Named Capture” on page 2-92

“Conditional Expressions” on page 2-94

“Dynamic Regular Expressions” on page 2-96

“String Replacement” on page 2-105

“Handling Multiple Strings” on page 2-107

“Function, Mode Options, Operator, Return Value Summaries” on page
2-110

Overview

A regular expression is a string of characters that defines a certain pattern.
You normally use a regular expression to search text for a group of words
that matches the pattern. for example, while parsing program input or while
processing a block of text.

2-57

2 Basic Program Components

2-58

The string 'Joh?n\w*' is an example of a regular expression. It defines a
pattern that starts with the letters Jo, is optionally followed by the letter

h (indicated by 'h?'), is then followed by the letter n, and ends with any
number of word characters ! (indicated by '\w*'). This pattern matches any
of the following:

Jon, John, Jonathan, Johnny

Regular expressions provide a unique way to search a volume of text for a
particular subset of characters within that text. Instead of looking for an
exact character match as you would do with a function like strfind, regular
expressions give you the ability to look for a particular pattern of characters.

For example, several ways of expressing a metric rate of speed are:

km/h

km/hr

km/hour
kilometers/hour
kilometers per hour

You could locate any of the above terms in your text by issuing five separate
search commands:

strfind(text, 'km/h');
strfind(text, 'km/hour');
- etc. -

1. The term “word characters” in this text refers to characters that are alphabetic, numeric,
or underscore.

Regular Expressions

To be more efficient, however, you can build a single phrase that applies to
all of these search strings:

|'k." or 'I{ill:‘n'|f|:|ll|:|wed by ..

L—ﬂ'm' ar 'meter5'|fnllnwed by ..

'fUoor 'per"|fnlluwed by

"' or 'hr' or ‘hour!

Translate this phrase it into a regular expression (to be explained later in
this section) and you have:

pattern = 'k(ilo)?m(eters)?(/|\sper\s)h(r|our)?';

Now locate one or more of the strings using just a single command:

text = ['The high-speed train traveled at 250 ',
'kilometers per hour alongside the automobile ',
"travelling at 120 km/h.'];

regexp(text, pattern, 'match')
ans =
'kilometers per hour' "km/h'

Calling Regular Expression Functions from MATLAB

This section covers the following topics:

e “MATLAB Regular Expression Functions” on page 2-60
¢ “Returning the Desired Information” on page 2-60

¢ “Modifying Parameters of the Search” on page 2-61

2-59

2 Basic Program Components

2-60

Note The examples in this and some of the later sections of this
documentation use expressions that can be difficult to decipher for anyone
not previously exposed to them. The purpose of these initial examples is to
introduce the basic use of regular expressions in MATLAB. Learning how
to translate the expressions begins in the “Metacharacters and Operators”
on page 2-68 section.

MATLAB Regular Expression Functions

There are four MATLAB functions that support searching and replacing
characters using regular expressions. The first three are similar in the input
values they accept and the output values they return. For details, click the

links in the table to see the corresponding function reference pages in the
MATLAB Help.

Function Description

regexp Match regular expression.

regexpi Match regular expression, ignoring case.
regexprep Replace string using regular expression.
regexptranslate Translate string into regular expression.

When calling any of the first three functions, pass the string to be parsed

and the regular expression in the first two input arguments. When calling
regexprep, pass an additional input that is an expression that specifies a

pattern for the replacement string.

Returning the Desired Information
The regexp and regexpi functions return from 1 to 7 output values. providing

the following information:
¢ The content or array indices of all matching strings
¢ The content of all nonmatching strings

¢ The content, names, or array indices of all tokens that were found

Regular Expressions

Unless you specify otherwise, MATLAB returns as many output values as
you have output variables for. These are returned in the order shown by the
“Return Value Summary” on page 2-118 table.

The following call to regexp returns all 7 outputs:

[matchStart, matchEnd, tokenIndices, matchStrings,
tokenStrings, tokenName, splitStrings] = regexp(str, expr);

To specify fewer values to return, include an identifying keyword in the input
argument list when you call regexp or regexpi. For example, the following
statement uses two of these keywords, match and start:

[matchStrings, matchStart] = regexp(str, expr, 'match', 'start')

When you execute this statement, MATLAB assigns a cell array of all strings
that match the pattern to variable matchStrings, and assigns an array of
doubles containing the starting index of each match to variable matchStart.

For information on these output values and selecting which outputs to return,
see the regexp function reference page.

Modifying Parameters of the Search

You can fine-tune your regular expression parsing using the optional mode
inputs: Case Sensitivity, Dot Matching, Anchor Type, and Spacing. These
modes tell MATLAB whether or not to:

¢ Consider letter case when matching an expression to a string (Case
Sensitivity mode).

¢ Include the newline (\n) character when matching the dot (.)
metacharacter in a regular expression (Dot Matching mode).

® Consider the ~ and $ metacharacters to represent the beginning and end of
a string or the beginning and end of a line (Anchor Type mode).

¢ Ignore space characters and comments in the expression or to interpret
them literally (Spacing mode).

Applying Modes. You can apply any of these modes in either of two ways:

2-61

2

Basic Program Components

2-62

® Apply the mode to all of a regular expression by passing the mode specifier
in the argument list of the call. See Example 1, below.

* Apply the mode to specific parts of your expression by specifying the mode
symbolically within the regular expression itself. See Example 2, below.

Example 1 — Applying Case Sensitivity Mode to the Entire String.
Create two slightly different strings, s1 and s2. Then write an expression
expr that you can use to match both of these strings, but only when ignoring
case. (The expression operators .+ match any consecutive series of any
character between the MAT or mat phrases.)

s1 = 'Save your MATLAB data to a .mat file in C:\work\matlab';
s2 = 'Save your MATLAB data to a .MAT file in C:\work\matlab';
expr = '.+MAT.+mat.+mat';

Run regexp on both strings at the same time in ignorecase mode and
examine the output in cell array c:

c = regexp({s1, s2}, expr, 'match', 'ignorecase');
c{:}
ans =

'Save your data to a file with a .mat extension'
ans =

'Save your data to a file with a .MAT extension'

Because of the ignorecase mode, there is a match for both strings. When you
use matchcase mode instead, only the exact case match is accepted:

c = regexp({s1, s2}, expr, 'match', 'matchcase');
c{:}
ans =
{}
ans =

'Save your data to a file with a .MAT extension'

Example 2 — Applying Case Sensitivity Mode Selectively. This
example uses symbolic mode designators within the expression itself. The
(?1i) symbol tells regexp to ignore case for that part of the expression that
immediately follows it. Similarly, the (?-1i) symbol requires case to match for
the part of the expression following it.

Regular Expressions

Here are three strings that vary slightly in case. Following that is the
expression expr that employs the two states of the Case Sensitivity mode.
Note that each of the (?-1i) or (?i) symbols used in this expression applies
only to the letters MAT or mat that immediately follow it:

s 'Save your MATLAB data to a .mat file in C:\work\matlab';
s2 'Save your MATLAB data to a .MAT file in C:\work\MATLAB';
s3 = 'Save your MATLAB data to a .MAT file in C:\work\matlab';
expr = '".*(?-1)MAT.*(?i)mat.*(?-1i)mat’;

Run regexp on the three strings. According to the expression expr, the first
and third instances of the letters 'mat’ must be in upper and lower case,
respectively. Case is ignored for the second instance. Only strings s1 and s3
satisfy this condition:

c = regexp({s1,s2,s3}, expr, 'match');

c{:}
ans =
'Save your MATLAB data to a .mat file in C:\work\mat'
ans =
{}
ans =

'Save your MATLAB data to a .MAT file in C:\work\mat'

Parsing Strings with Regular Expressions

MATLAB parses a string from left to right, “consuming” the string as it goes.
If matching characters are found, regexp records the location and resumes
parsing the string, starting just after the end of the most recent match.
There is no overlapping of characters in this process. See Examples 2a and
2b under “Using the Lookahead Operator” if you need to match overlapping
character groups.

There are three steps involved in using regular expressions to search text
for a particular string:

1 Identify unique patterns in the string

This entails breaking up the string you want to search for into groups of like
character types. These character types could be a series of lowercase letters,
a dollar sign followed by three numbers and then a decimal point, etc.

2-63

2 Basic Program Components

2-64

2 Express each pattern as a regular expression

Use the metacharacters and operators described in this documentation to
express each segment of your search string as a regular expression. Then
combine these expression segments into the single expression to use in
the search.

3 Call the appropriate search function

Pass the string you want to parse to one of the search functions, such as
regexp or regexpi, or to the string replacement function, regexprep.

The example shown in this section searches a record containing contact
information belonging to a group of five friends. This information includes
each person’s name, telephone number, place of residence, and e-mail address.
The goal is to extract specific information from one or more of the strings.

contacts = {

'Harry 287-625-7315 Columbus, OH hparker@hmail.com';
'danice 529-882-1759 Fresno, CA jan_stephens@horizon.net';
'Mike 793-136-0975 Richmond, VA sue_and_mike@hmail.net';
'Nadine 648-427-9947 Tampa, FL nadine_berry@horizon.net';
‘Jason 697-336-7728 Montrose, CO jason_blake@mymail.com'};

The first part of the example builds a regular expression that represents the
format of a standard e-mail address. Using that expression, the example then
searches the information for the e-mail address of one of the group of friends.
Contact information for Janice is in row 2 of the contacts cell array:

contacts{2}
ans =
Janice 793-882-1759 Fresno, CA jan_stephens@horizon.net

Step 1 — Identify Unique Patterns in the String

A typical e-mail address is made up of standard components: the user’s
account name, followed by an @ sign, the name of the user’s internet service
provider (ISP), a dot (period), and the domain to which the ISP belongs. The
table below lists these components in the left column, and generalizes the
format of each component in the right column.

Regular Expressions

Unique patterns of an email address

General description of each pattern

Start with the account name
jan_stephens

One or more lowercase letters and underscores

Add’@ @ sign
jan_stephense@

Add the ISP One or more lowercase letters, no underscores
jan_stephens@horizon

Add a dot (period) Dot (period) character

jan_stephens@horizon.

Finish with the domain
jan_stephens@horizon.net

com or net

Step 2 — Express Each Pattern as a Regular Expression

In this step, you translate the general formats derived in Step 1 into segments
of a regular expression. You then add these segments together to form the

entire expression.

The table below shows the generalized format descriptions of each character
pattern in the left-most column. (This was carried forward from the right
column of the table in Step 1.) The second column links to tables in this
documentation that show the appropriate expressions to use in translating
this description into a regular expression. The third column shows the
operators or metacharacters chosen from those tables to represent the

character pattern.

Description of each Tables referenced Related
segment metacharacters
One or more lowercase See Character Types on page 2-112, [a-z_]+
letters and underscores Quantifiers on page 2-115.
@ sign See Character Representation on page @
2-113.
One or more lowercase See Character Types on page 2-112, [a-z]+
letters, no underscores Quantifiers on page 2-115.

2-65

2 Basic Program Components

2-66

Description of each Tables referenced Related
segment metacharacters
Dot (period) character See Character Representation on page \.

2-113.
com or net See Grouping Operators on page 2-113. (com|net)

Assembling these metacharacters into one string gives you the complete
expression:

email = '[a-z_]+@[a-z]+\.(com|net)";

Step 3 — Call the Appropriate Search Function

In this step, you use the regular expression derived in Step 2 to match an
e-mail address for one of the friends in the group. Use the regexp function
to perform the search.

Here is the list of contact information shown earlier in this section. Each
person’s record occupies a row of the contacts cell array:

contacts = {

'Harry 287-625-7315 Columbus, OH hparker@hmail.com';
'danice 529-882-1759 Fresno, CA jan_stephens@horizon.net';
'Mike 793-136-0975 Richmond, VA sue_and_mike@hmail.net';
'Nadine 648-427-9947 Tampa, FL nadine_berry@horizon.net';
‘Jason 697-336-7728 Montrose, CO jason_blake@mymail.com'};

This is the regular expression that represents an e-mail address, as derived
in Step 2:

email = '[a-z_]+@[a-z]+\.(com|net)";

Call the regexp function, passing row 2 of the contacts cell array and the
email regular expression. This returns the e-mail address for Janice.

regexp(contacts{2}, email, 'match')
ans =
"jan_stephens@horizon.net'

Regular Expressions

Note The last input passed to regexp in this command is the keyword
'match' This keyword causes regexp to return the output as a string instead
of as indices into the cell array.

Make the same call, but this time for the fifth person in the list:

regexp(contacts{5}, email, 'match')
ans =
'jason_blake@mymail.com'

You can also search for the e-mail address of everyone in the list by using the
entire cell array for the input string argument:

regexp(contacts, email, 'match');

Other Benefits of Using Regular Expressions

In addition to parsing single strings, you can also use the MATLAB regular
expression functions for any of the following tasks:

® “Parsing or Replacing with Multiple Expressions and Strings” on page 2-67
e “Replacing Parts of a String” on page 2-67

e “Matching with Tokens Taken from the String” on page 2-68
e “Matching and Replacing Strings Dynamically” on page 2-68

Parsing or Replacing with Multiple Expressions and Strings
The MATLAB regular expression functions also work on multiple strings
contained in a cell array. You can use multiple strings as the strings to
be parsed, as regular expressions to match against the parse string(s), as
replacement strings, or most combinations of these.

Replacing Parts of a String

String replacement with regular expressions requires the regexprep function.
This function accepts two regular expressions in its input argument list. Each
expression specifies a character pattern to match in the string to be parsed.

2-67

2 Basic Program Components

2-68

The function then replaces occurrences of the first pattern with occurrences of
the second.

Matching with Tokens Taken from the String

A token is one or more characters selected from within the string being
parsed that you can use to match other characters in the same string. The
characters representing a token are not constants; they depend upon the
contents of the parse string that match a part of the expression. You define a
token by enclosing part of a regular expression in parentheses. You search for
that token using the metacharacters \1, \2, etc. You can also use tokens in
specifying a replacement string for the regexprep function. In this case, you
refer to specific tokens using the metacharacters $1, $2, etc.

Matching and Replacing Strings Dynamically

With dynamic expressions, you can:

e Execute a MATLAB command within your expression parsing command.

e Execute a MATLAB command, and include the returned string in the
match expression.

® Parse a regular expression and include the resulting string in the match
expression.

Metacharacters and Operators

Much of the remainder of this section on regular expressions documents
the various metacharacters and operators that you need to compose your
expressions.

Category Metacharacters and Operators

“Character Type Operators” on One of a certain group of characters (e.g., a character

page 2-69 in a predefined set or range, a whitespace character, an
alphabetic, numeric, or underscore character, or a character
that is not in one of these groups.

“Character Representation” on Metacharacters that represent a special character (e.g.,

page 2-73 backslash, new line, tab, hexadecimal values, any
untranslated literal character, etc.

Regular Expressions

Category

Metacharacters and Operators

“Grouping Operators” on page
2-74

A grouping of letters or metacharacters to apply a regular
expression operator to.

“Nonmatching Operators” on
page 2-76

Text included in an expression for the purpose of adding a
comment statement, but not to be used as a pattern to find
a match for.

“Positional Operators” on page
2-77

Location in the string where the characters or pattern must
be positioned for there to be a match (e.g., start or end of the
string, start or end of a word, an entire word).

“Lookaround Operators” on page
2-78

Characters or patterns that immediately precede or follow
the intended match, but are not considered to be part of the
match itself.

“Quantifiers” on page 2-84

Various ways of expressing the number of times a character
or pattern is to occur for there to be a match (e.g., exact
number, minimum, maximum, Zero or one, Zero or more, one
or more, etc.)

“Tokens” on page 2-87

Characters or patterns selected from the string being parsed
that you can use to match other characters in the string.

“Named Capture” on page 2-92

Operators used in assigning names to matched tokens, thus
making your code more maintainable and the output easier
to interpret.

“Conditional Expressions” on
page 2-94

Operators that express conditions under which a certain
match is considered to be is acceptable.

“Dynamic Regular Expressions”
on page 2-96

Operators that include a subexpression or command that
MATLAB parses or executes. MATLAB uses the result of
that operation in parsing the overall expression.

“String Replacement” on page
2-105

Operators used with the regexprep function to specify the
content of the replacement text.

Character Type Operators

Tables and examples in this and subsequent sections show the operators
and syntax supported by the MATLAB regexp, regexpi, and regexprep
functions. Expressions shown in the left column have special meaning and

2-69

2 Basic Program Components

match one or more characters according to the usage described in the right
column. Any character not having a special meaning, for example, any
alphabetic character, matches that same character literally. To force one of
the regular expression functions to interpret a sequence of characters literally
(rather than as an operator) use the regexptranslate function.

Character types represent either a specific set of characters (e.g., uppercase)
or a certain type of character (e.g., nonwhitespace).

Operator Usage
Any single character, including white space

[c,c,e,] Any character contained within the brackets: c, or c,
or c,

["ciceC4] Any character not contained within the brackets:
anything but ¢, or ¢, or c,

[c,-c,] Any character in the range of ¢, through c,

\s Any white-space character; equivalent to [
\FAn\r\t\v]

\S Any nonwhitespace character; equivalent to [*
\FAn\r\t\v]

\w Any alphabetic, numeric, or underscore character.
For English character sets, this is equivalent to
[a-zA-Z_0-9].

\W Any character that is not alphabetic, numeric, or

underscore. For English character sets, this is
equivalent to ["a-zA-Z 0-9].

\d Any numeric digit; equivalent to [0-9]

\D Any nondigit character; equivalent to [*0-9]

The following examples demonstrate how to use the character classes listed
above. See the regexp reference page for help with syntax. Most of these
examples use the following string:

str = 'The rain in Spain falls mainly on the plain.';

2-70

Regular Expressions

Any Character — .
The . operator matches any single character, including whitespace.

Example 1 — Matching Any Character. Use the dot (.) operator to locate
sequences of five consecutive characters that end with 'ain'. The regular
expression used in this example is

expr = .ain';
Find each occurrence of the expression expr within the input string str.
Return a vector of the indices at which any matches begin:

str = 'The rain in Spain falls mainly on the plain.';

startIndex = regexp(str, expr)
startIndex =
4 13 24 39

Here is the input string with the returned startIndex values shown below
it. Note that the dot operator not only matches the letters in the string, but
whitespace characters as well:

The rain in Spain falls mainly on the plain.

| | | |
4 13 24 39

If you would prefer to have MATLAB return the text of the matching
substrings, use the 'match' qualifier in the command:

matchStr = regexp(str, expr, 'match')
matchStr =
" rain' 'Spain’ " main' ‘plain'

Example 2 — Returning Strings Rather than Indices. Here is the same
example, this time specifying the command qualifier 'match'. In this case,
regexp returns the text of the matching strings rather than the starting index:

regexp(str, '..ain', 'match')
ans =

rain' 'Spain’ " main' ‘plain’

2-71

2 Basic Program Components

Selected Characters — [c1¢2¢3]

Use [c,c,C,] in an expression to match selected characters r, p, or m followed
by 'ain'. Specify two qualifiers this time, 'match' and 'start', along with

an output argument for each, mat and idx. This returns the matching strings
and the starting indices of those strings:

[mat idx] = regexp(str, '[rpm]ain’', 'match', 'start')
mat =

'rain' 'pain' ‘main'
idx =

5 14 25

Range of Characters — [c1 - ¢2]

Use [c;-C,] in an expression to find words that begin with a letter in the
range of A through Z:

[mat idx] = regexp(str, '[A-Z]\w*', 'match', 'start')
mat =

'The' 'Spain’
idx =

1 13

Word and White-Space Characters — \w, \s

Use \w and \s in an expression to find words that end with the letter n
followed by a white-space character. Add a new qualifier, 'end', to return
the str index that marks the end of each match:

[mat ix1 ix2] = regexp(str, '\w*n\s', 'match', 'start', 'end')
mat =

‘rain ' "in ' ‘Spain ' ‘on '
ix1 =

5 10 13 32
ix2 =
9 12 18 34

2-72

Regular Expressions

Numeric Digits — \d

Use \d to find numeric digits in the following string:

numstr = 'Easy as 1, 2, 3';
[mat idx] = regexp(numstr, '\d', 'match', 'start')
mat =
I1I I2I I3I
idx =

9 12 15

Character Representation

The following character combinations represent specific character and
numeric values.

Operator Usage

\a Alarm (beep)

\\ Backslash

\$ Dollar sign

\b Backspace

\f Form feed

\n New line

\r Carriage return

\t Horizontal tab

\v Vertical tab

\oN or \o{N} Character of octal value N

\xN or \x{N} | Character of hexadecimal value N

\char If a character has special meaning in a regular expression,
precede it with backslash (\) to match it literally.

Octal and Hexadecimal — \o, \x

Use \x and \o0 in an expression to find a comma (hex 2C) followed by a space
(octal 40) followed by the character 2:

2-73

2 Basic Program Components

numstr = 'Easy as 1, 2, 3';

[mat idx] = regexp(numstr, '\x2C\o{40}2', 'match', 'start')
mat =

idx =
10

Grouping Operators

When you need to use one of the regular expression operators on a number of
consecutive elements in an expression, group these elements together with
one of the grouping operators and apply the operation to the entire group. For
example, this command matches a capital letter followed by a numeral and
then an optional space character. These elements have to occur at least two
times in succession for there to be a match. To apply the {2,} multiplier to
all three consecutive characters, you can first make a group of the characters
and then apply the (?:) quantifier to this group:

regexp('B5 A2 6F 63 R6 P4 B2 BC', '(?:[A-Z]\d\s?){2,}', 'match')
ans =
'B5 A2 ' 'R6 P4 B2 '

There are three types of explicit grouping operators that you can use when you
need to apply an operation to more than just one element in an expression.
Also in the grouping category is the alternative match (logical OR) operator,
|. This creates two or more groups of elements in the expression and applies
an operation to one of the groups.

Operator Usage

(expr) Group regular expressions and capture tokens.
(?:expr) Group regular expressions, but do not capture tokens.
(?>expr) Group atomically.

expr;|expr, Match expression expr, or expression expr,.

Grouping and Capture — (expr)
When you enclose an expression in parentheses, MATLAB not only treats all
of the enclosed elements as a group, but also captures a token from these

2-74

Regular Expressions

elements whenever a match with the input string is found. For an example of
how to use this, see “Using Tokens — Example 1” on page 2-89.

Grouping Only — (?:expr)

Use (?:expr) to group a non-vowel (consonant, numeric, whitespace,
punctuation, etc.) followed by a vowel in the palindrome pstr. Specify at least
two consecutive occurrences ({2,}) of this group. Return the starting and
ending indices of the matched substrings:

pstr = 'Marge lets Norah see Sharon''s telegram';
expr = '(?:["aeiou][aeiou]){2,}"';
[mat ix1 ix2] = regexp(pstr, expr, 'match', 'start', 'end')
mat =
‘Nora' "haro' ‘tele’
ix1 =

12 23 31
15 26 34
Remove the grouping, and the {2,} now applies only to [aeiou]. The

command is entirely different now as it looks for a non-vowel followed by at
least two consecutive vowels:

expr = '[“aeiou][aeiou]{2,}';
[mat ix1 ix2] = regexp(pstr, expr, 'match', 'start', 'end')
mat =
'see’
ix1 =
18
ix2 =
20

Alternative Match — exprl1 |expr2
Use p, | p, to pick out words in the string that start with let or tel:

regexpi(pstr, '(let|tel)\w+', 'match')

2-75

2 Basic Program Components

ans =
'lets’ "telegram'

Note The expressions A | B and B | A may return different answers. If there
1s a match with the first part of the expression (before the | symbol), then the
second part (that follows the | symbol) is not considered.

See the following example. Both calls to regexp parse the same string, and,
except for the order of the OR conditions, the same expression. But the first
call returns two values and the second returns just one:

string = 'one two'; expr1l = "(\w+\s\w+)'; expr2 = '"(\w+)';
regexp(string, [expr1 '|' expr2], 'match')
ans =
'one two'
regexp(string, [expr2 '|' expri], 'match')
ans =
‘one' "two'

Nonmatching Operators

The comment operator enables you to insert comments into your code to make
it more maintainable. The text of the comment is ignored by MATLAB when
matching against the input string.

Operator Usage

(?#comment) Insert a comment into the expression. Comments are
ignored in matching.

Including Comments — (?#expr)

Use (?#expr) to add a comment to this expression that matches capitalized
words in pstr. Comments are ignored in the process of finding a match:

regexp(pstr, '(?# Match words in caps)[A-Z]\w+', 'match')
ans =

2-76

Regular Expressions

'Marge'’ "Norah' "Sharon'

Positional Operators

Positional operators in an expression match parts of the input string not by
content, but by where they occur in the string (e.g., the first N characters in
the string).

Operator Usage

~expr Match expr if it occurs at the beginning of the input
string.

expr$ Match expr if it occurs at the end of the input string.

\<expr Match expr when it occurs at the beginning of a
word.

expr\> Match expr when it occurs at the end of a word.

\<expr\> Match expr when it represents the entire word.

Start and End of String Match — “expr, expr$

Use “expr to match words starting with the letter m or M only when it begins
the string, and expr$ to match words ending with m or M only when it ends
the string:

regexpi(pstr, '~m\w*|\w*m$', 'match')
ans =
'Marge' ‘telegram'

Start and End of Word Match — \<expr, expr\>

Use \<expr to match any words starting with n or N, or ending with e or E:
regexpi(pstr, '\<n\w*|\w*e\>', 'match')

ans =
'Marge'’ "Norah' ‘see’

2-77

2 Basic Program Components

2-78

Exact Word Match — \<expr\>

Use \<expr\> to match a word starting with an n or N and ending with an h
or H:

regexpi(pstr, '\<n\w*h\>', 'match')
ans =
‘Norah'

Lookaround Operators

Lookaround operators tell MATLAB to look either ahead or behind the
current location in the string for a specified expression. If the expression is
found, MATLAB attempts to match a given pattern.

This table shows the four lookaround expressions: lookahead, negative
lookahead, lookbehind, and negative lookbehind.

Operator Usage

(?=expr) Look ahead from current position and test if expr
1s found.

(?'expr) Look ahead from current position and test if expr
is not found

(?<=expr) Look behind from current position and test if expr
1s found.

(?<!expr) Look behind from current position and test if expr

is not found.

Lookaround operators do not change the current parsing location in the input
string. They are more of a condition that must be satisfied for a match to occur.

For example, the following command uses an expression that matches
alphabetic, numeric, or underscore characters (\w*) that meet the condition
that they look ahead to (i.e., are immediately followed by) the letters vision.
The resulting match includes only that part of the string that matches the
\w* operator; it does not include those characters that match the lookahead
expression (?=vision):

[s e] = regexp('telegraph television telephone',

Regular Expressions

"\w*(?=vision)', 'start', 'end')
11

14

If you repeat this command and match one character beyond the lookahead
expression, you can see that parsing of the input string resumes at the
letter v, thus demonstrating that matching the lookahead operator has not
consumed any characters in the string:

regexp('telegraph television telephone',
"\w*(?=vision).', 'match')
ans =
"telev’

Note You can also use lookaround operators to perform a logical AND of two
elements. See “Using Lookaround as a Logical Operator” on page 2-83.

Using the Lookahead Operator — expr(?=test)

Example 1 — Lookahead. Look ahead to a file name (fileread.m), and
return only the name of the folder in which it resides, not the file name itself.
Note that the lookahead part of the expression serves only as a condition for
the match; it is not part of the match itself:

str
str

which('fileread')

C:\Akernel\perfect\matlab\toolbox\matlab\iofun\fileread.m

% Look ahead to a backslash (\\), followed by a file name (\w+)
% with an .m or .p extension (\.[mp]). Capture the letters
% that precede this sequence.
regexp(str, '\w+(?=\\\w+\.[mp])', 'match')
ans =
"iofun’

2-79

2 Basic Program Components

2-80

Example 2a — Matching Sequential Character Groups. MATLAB
parses a string from left to right, “consuming” the string as it goes. If
matching characters are found, regexp records the location and resumes
parsing the string from the location of the most recent match. There is no
overlapping of characters in this process.

Find all sequences of 6 nonwhitespace characters in the input string shown
below. Following the MATLAB default behavior, do not allow for overlap.
That is, begin looking for your next match starting just after the end of the
current match:

string = 'Locate several 6-char. phrases';
regexpi(string, '\S{6}')
ans =

1 8 16 24

This statement finds the phrases:

Locate severa 6-char phrase

Example 2b — Using Lookahead to Match Overlapping Character
Groups. If you need to find every sequence of characters that match a pattern,
including sequences that overlap another, capture only the first character and
look ahead for the remainder of the pattern. In other words, begin looking for
your next match starting after the next character of the current match:

string = 'Locate several 6-char. phrases';
regexpi(string, '\S(?=\S{5})"')
ans =

1 8 9 16 17 24 25

This statement finds the phrases:

Locate severa everal 6-char -char. phrase hrases

Using the Negative Lookahead Operator — expr(?!test)

Example — Negative Lookbehind and Lookahead. Generate a series of
sequential numbers:

n = num2str(5:15)

Regular Expressions

5 6 7 8 9 10 11 12 13 14 15

Use both the negative lookbehind and negative lookahead operators together
to precede only the single-digit numbers with zero:

regexprep(n, '(?<!\d)(\d)(?!\d)', '0%$1")

ans =
05 06 07 08 09 10 11 12 13 14 15

Using the Lookbehind Operator — (?<=test)expr

Example 1 — Positive and Negative Lookbehind Operators. Using the
lookbehind operator, find the letter r that is preceded by the letter u:

str = 'Neural Network Toolbox';
startIndex = regexp(str, '(?<=u)r', 'start')
startIndex =

4

Using the negative lookbehind operator, find the letter r that is not preceded
by the letter u:

startIndex = regexp(str, '(?<!u)r', 'start')
startIndex
13

Example 2 — Lookbehind. Return the names and 7-digit telephone
numbers for those people in the list that are in the 617 area code. The
lookbehind (?<="617-) finds those lines that begin with the number 617:

phone_list = {...

'978-389-2457 Kevin'; '617-922-3091 Ruth';
'781-147-1748 Alan'; '508-643-9648 George';
'617-774-6642 Lisa'; '617-241-0275 Greg'; .
'413-995-9114 Jason'; '781-276-0482 Victoria'};

len = length(phone_list);

2-81

2 Basic Program Components

ph617 = regexp(phone_list, '(?<="617-).*', 'match');

for k=1:len

str = char(ph617{k});

if ~isempty(str), fprintf (' %ss\n', str), end
end

MATLAB returns the three numbers that have a 617 area code:

922-3091 Ruth
774-6642 Lisa
241-0275 Greg

Using the Negative Lookbehind Operator— (?<!test)expr

Example — Negative Lookbehind. This example uses negative lookbehind
to find those tasks that are not labelled as Done or Pending, Create a list of
tasks, each with status information to the left:

tasks = {...

"ToDo 3892457 ", ‘Done 9223091 ;
'Pending 1471748'; ‘Maybe 7746642 "
'ToDo 2410275"'; 'Pending 4723596';
"ToDo 9959114 ", ‘Maybe 2760482 " ;
'ToDo 3080027 "' ; ‘Done 1221941 '},

count = length(tasks);

The regular expression looks for those task numbers that do not have a Done
or Pending status. Note that you can use the or (|) operator in a lookaround
to check for more than one condition:

doNow = regexp(tasks, '(?<!”~(Done|Pending).*)\d+', 'match');
Now print out the results:

disp 'The following tasks need attention:'
for k=1:count

s = char(doNow{k});

if ~isempty(s), fprintf (' %ss\n', s), end
end

2-82

Regular Expressions

The output displays all but the Done and Pending tasks:

The following tasks need attention:
3892457
7746642
2410275
9959114
2760482
3080027

Using Lookaround as a Logical Operator

One way in which a lookahead operation can be useful is to perform a logical
AND between two conditions. This example initially attempts to locate all
lowercase consonants in a text string. The text string is the first 50 characters
of the help for the normest function:

helptext = help('normest');

str = helptext(1:50)

str =

NORMEST Estimate the matrix 2-norm.
NORMEST (S

Merely searching for non-vowels ([“aei0UAEIOU]) does not return the
expected answer, as the output includes capital letters, space characters,
and punctuation:

C = regexp(str, '[~aeiouAEIOU]', 'match')
C =
Columns 1 through 12
1 1 INI IRI IMI ISI ITI 1 1 ISI I.tl Iml I.tl
-- etc. --

Try this again, using a lookahead operator to create the following AND
condition:

(lowercase letter) AND (not a vowel).

This time, the result is correct:

2-83

2 Basic Program Components

o
|

= regexp(str, '(?=[a-z])["aeiou]', 'match')

(@]
-

SI |t| |m 1 |t| |t| |h| |m| |t| |r.| |X|

Note that when using a lookahead operator to perform an AND, you need to
place the match expression expr after the test expression test:

(?=test)expr or (?!test)expr

Quantifiers

With the quantifiers shown below, you can specify how many instances of an
element are to be matched. The basic quantifying operators are listed in
the first six rows of the table.

By default, MATLAB matches as much of an expression as possible. Using
the operators shown in the last two rows of the table, you can override this
default behavior. Specify these options by appending a + or ? immediately
following one of the six basic quantifying operators.

Operator Usage

expr{m,n} Must occur at least m times but no more than n times.

expr{m,} Must occur at least m times.

expr{n} Must match exactly n times. Equivalent to {n,n}.

expr? Match the preceding element 0 times or 1 time. Equivalent
to {0,1}.

expr* Match the preceding element 0 or more times. Equivalent
to {0, }.

expr+ Match the preceding element 1 or more times. Equivalent
to {1,}.

2-84

Regular Expressions

Operator Usage

g_expr+ Match as much of the quantified expression as possible, but
do not rescan any portions of the string if the initial match
fails. The term gq_expr represents any of the expressions
shown in the top six rows of this table.

g_expr? Match only as much of the quantified expression as
necessary. The term g_expr represents any of the
expressions shown in the top six rows of this table. For an
example, see “Lazy Quantifiers — expr*?” on page 2-87,
below.

Zero or One — expr?

Use ? to make the HTML <code> and </code> tags optional in the string. The
first string, hstr1, contains one occurrence of each tag. Since the expression
uses ()? around the tags, one occurrence is a match:

hstr1 = '<td><code>%%</code>
</td>"';
expr = '(<code>)?..(</code>)?
"';

regexp(hstri, expr, 'match')
ans =
'<code>%%</code>
'

The second string, hstr2, does not contain the code tags at all. Just the same,
the expression matches because ()? allows for zero occurrences of the tags:

hstr2 = '<td>%%
</td>";
expr = '(<code>)?..(</code>)?
';

regexp(hstr2, expr, 'match')
ans =
'%%
'

Zero or More — expr*

The first regexp command looks for at least one occurrence of
 and finds
it. The second command parses a different string for at least one
 and

2-85

2 Basic Program Components

2-86

fails. The third command uses * to parse the same line for zero or more line
breaks and this time succeeds.

hstr1 = '<p>This string has

line breaks</p>';
regexp(hstri, '<p>.*(
).*</p>', 'match')
ans =

'<p>This string has

line breaks</p>';

hstr2 = '<p>This string has no line breaks</p>';
regexp(hstr2, '<p>.*(
).*</p>', 'match')
ans =

{}

regexp(hstr2, '<p>.*(
)*.*</p>', 'match')
ans =
'<p>This string has no line breaks</p>';

One or More — expr+

Use + to verify that the HTML image source is not empty. This looks for one
or more characters in the gif filename:

hstr
expr

‘';
‘<img src="\w+.gif';

regexp(hstr, expr, 'match')
ans =
'<img src="b_prev.gif'

Exact, Minimum, and Maximum Quantities — {min,max}
Use {m}, {m,}, and {m,n} to verify the href syntax used in HTML. This
statement requires the href to have at least one nonwhitespace character,
followed by exactly one occurrence of .html, optionally followed by # and
five to eight digits:

hstr
expr

'";
‘<a href="\w{1,}(\.html) {1} (\#\d{5,8}){0,1}"";

Regular Expressions

regexp(hstr, expr, 'match')
ans =
'<a href="s13.html#18760""'

Lazy Quantifiers — expr*?

This example shows the difference between the default (greedy) quantifier
and the lazy quantifier (?). The first part of the example uses the default
quantifier to match all characters from the opening <tr to the ending </td:

hstr = '<tr valign=top><td>
</td>";
regexp(hstr, '</?t.*>', 'match')
ans =

'<tr valign=top><td>
</td>'

The second part uses the lazy quantifier to match the minimum number of
characters between <tr, <td, or </td tags:

regexp(hstr, '</?t.*?>', 'match')
ans =
'<tr valign=top>' ‘<td>' '</td>!
Tokens

Parentheses used in a regular expression not only group elements of that
expression together, but also designate any matches found for that group as
tokens. You can use tokens to match other parts of the same string. One
advantage of using tokens is that they remember what they matched, so you
can recall and reuse matched text in the process of searching or replacing.

This section covers

“Operators Used with Tokens” on page 2-88

¢ “Introduction to Using Tokens” on page 2-88
e “Using Tokens — Example 1” on page 2-89

¢ “Using Tokens — Example 2” on page 2-90

e “Tokens That Are Not Matched” on page 2-90

¢ “Using Tokens in a Replacement String” on page 2-92

2-87

2 Basic Program Components

2-88

Operators Used with Tokens
Here are the operators you can use with tokens in MATLAB.

Operator Usage

(expr) Capture in a token all characters matched by the
expression within the parentheses.

\N Match the N** token generated by this command. That is,
use \1 to match the first token, \2 to match the second,
and so on.

$N Insert the match for the N** token in the replacement
string. Used only by the regexprep function. If N
is equal to zero, then insert the entire match in the
replacement string.

(?(N)s1]s2) If Nt token is found, then match s1, else match s2

Introduction to Using Tokens

You can turn any pattern being matched into a token by enclosing the pattern
in parentheses within the expression. For example, to create a token for

a dollar amount, you could use ’(\$\d+)’. Each token in the expression is
assigned a number, starting from 1, going from left to right. To make a
reference to a token later in the expression, refer to it using a backslash
followed by the token number. For example, when referencing a token
generated by the third set of parentheses in the expression, use \3.

As a simple example, if you wanted to search for identical sequential letters
in a string, you could capture the first letter as a token and then search for a
matching character immediately afterwards. In the expression shown below,
the (\S) phrase creates a token whenever regexp matches any nonwhitespace
character in the string. The second part of the expression, '\1', looks for a
second instance of the same character immediately following the first:

poestr = ['While I nodded, nearly napping, '
'suddenly there came a tapping,'];

[mat tok ext] = regexp(poestr, '(\S)\1', 'match',
"tokens', 'tokenExtents');
mat

Regular Expressions

mat =
Iddl Ippl Iddl Ippl

The tokens returned in cell array tok are:
1 d 1 s 1 p 1 , 1 d 1 s 1 p 1
Starting and ending indices for each token in the input string poestr are:

11 11, 26 26, 35 35, 57 57

Using Tokens — Example 1

Here 1s an example of how tokens are assigned values. Suppose that you
are going to search the following text:

andy ted bob jim andrew andy ted mark

You choose to search the above text with the following search pattern:
and(y|rew) | (t)e(d)

This pattern has three parenthetical expressions that generate tokens. When

you finally perform the search, the following tokens are generated for each
match.

Match Token 1 Token 2
andy y

ted t d
andrew rew

andy y

ted t d

Only the highest level parentheses are used. For example, if the search
pattern and(y|rew) finds the text andrew, token 1 is assigned the value rew.
However, if the search pattern (and(y|rew)) is used, token 1 is assigned
the value andrew.

2-89

2 Basic Program Components

2-90

Using Tokens — Example 2

Use (expr) and \N to capture pairs of matching HTML tags (e.g., <a> and
) and the text between them. The expression used for this example is

expr = '<(\W+).*?>.%2</\1>";

The first part of the expression, '<(\w+)’, matches an opening bracket (<)
followed by one or more alphabetic, numeric, or underscore characters. The
enclosing parentheses capture token characters following the opening bracket.

The second part of the expression, ’. *?>.*?’, matches the remainder of this
HTML tag (characters up to the >), and any characters that may precede the
next opening bracket.

The last part, '</\1>"', matches all characters in the ending HTML tag. This
tag is composed of the sequence </tag>, where tag is whatever characters
were captured as a token.

hstr = '<!comment>Default
"';
expr = "<(\wt).*?>.*?2</\1>";
[mat tok] = regexp(hstr, expr, 'match', 'tokens');
mat{:}
ans =

ans =
Default
tok{:}
ans =
g
ans =
"y

Tokens That Are Not Matched

For those tokens specified in the regular expression that have no match in the
string being evaluated, regexp and regexpi return an empty string (' ') as

Regular Expressions

the token output, and an extent that marks the position in the string where
the token was expected.

The example shown here executes regexp on the path string str returned
from the MATLAB tempdir function. The regular expression expr includes
six token specifiers, one for each piece of the path string. The third specifier
[a-z]+ has no match in the string because this part of the path, Profiles,
begins with an uppercase letter:

str = tempdir
str

C:\WINNT\Profiles\bpascal\LOCALS~1\Temp\

expr = ['([A-Z]:)\\(WINNT)\\ ([a-z]+)?.*\\"'
"([a-z]1+)\\ ([A-Z]+~\d)\\ (Temp)\\'];

[tok ext] = regexp(str, expr, 'tokens', 'tokenExtents');

When a token is not found in a string, MATLAB still returns a token string
and token extent. The returned token string is an empty character string
('"). The first number of the extent is the string index that marks where the
token was expected, and the second number of the extent is equal to one
less than the first.

In the case of this example, the empty token is the third specified in the
expression, so the third token string returned is empty:

tok{:}
ans =
'C:! "WINNT' v '"bpascal’ "LOCALS~1" "Temp'

The third token extent returned in the variable ext has the starting index
set to 10, which is where the nonmatching substring, Profiles, begins in the
string. The ending extent index is set to one less than the starting index, or 9:

ext{:}

ans =
1 2
4 8
10 9
19 25

2-91

2 Basic Program Components

2-92

27 34
36 39

Using Tokens in a Replacement String

When using tokens in a replacement string, reference them using $1, $2, etc.
instead of \1, \2, etc. This example captures two tokens and reverses their
order. The first, $1, is 'Norma Jean' and the second, $2, is 'Baker'. Note
that regexprep returns the modified string, not a vector of starting indices.

regexprep('Norma Jean Baker', '(\w+\s\w+)\s(\w+)', '$2, $1')
ans =
Baker, Norma Jean

Named Capture

If you use a lot of tokens in your expressions, it may be helpful to assign them
names rather than having to keep track of which token number is assigned
to which token. Use the following operator to assign a name to a token that
finds a match.

Operator Usage

(?<name>expr) Capture in a token all characters matched by the
expression within the parentheses. Assign a name to
the token.

\k<name> Match the token referred to by name.

$<name> Insert the match for named token in a replacement
string. Used only with the regexprep function.

(?(name)s1|s2) | If named token is found, then match s1; otherwise,
match s2

When referencing a named token within the expression, use the syntax
\k<name> instead of the numeric \1, \2, etc.:

poestr = ['While I nodded, nearly napping, '
'suddenly there came a tapping,'];

regexp(poestr, '(?<anychar>.)\k<anychar>', 'match')

Regular Expressions

ans =

|dd| |pp| |dd| |pp|

Labeling Your Output

Named tokens can also be useful in labeling the output from the MATLAB
regular expression functions. This is especially true when you are processing
numerous strings.

This example parses different pieces of street addresses from several strings.
A short name is assigned to each token in the expression string:

str1 = '"134 Main Street, Boulder, CO, 14923';

str2 = '26 Walnut Road, Topeka, KA, 25384';

str3 = '847 Industrial Drive, Elizabeth, NJ, 73548';
p1 = '(?<adrs>\d+\s\S+\s(Road|Street|Avenue|Drive))"';
p2 = '(?<city>[A-Z][a-z]+)";

p3 = '(?<state>[A-Z]{2})';

p4 = '(?<zip>\d{5})"';

expr = [pt ', " p2 ', ' p3 ', ' p4];

As the following results demonstrate, you can make your output easier to
work with by using named tokens:

loc1 = regexp(stri, expr, 'names')
loct =
adrs: '134 Main Street'
city: 'Boulder’
state: 'CO’
zip: '14923'
loc2 = regexp(str2, expr, 'names')
loc2 =
adrs: '26 Walnut Road'
city: 'Topeka'
state: 'KA'
zip: '25384'

2-93

2 Basic Program Components

2-94

loc3 = regexp(str3, expr, 'names')
loc3

adrs: '847 Industrial Drive'
city: 'Elizabeth’
state: 'NJ'

zip: '73548'

Conditional Expressions

With conditional expressions, you can tell MATLAB to match an expression
only if a certain condition is true. A conditional expression is similar to an
if-then or an if-then-else clause in programming. MATLAB first tests the
state of a given condition, and the outcome of this tests determines what, if
anything, is to be matched next. The following table shows the two conditional
syntaxes you can use with MATLAB.

Operator Usage
(?(cond)expr) If condition cond is true, then match expression
expr

(?(cond)expr,|expr,) | If condition cond is true, then match expression
expr,. Otherwise match expression expr,

The first entry in this table is the same as an if-then statement. MATLAB
tests the state of condition cond and then matches expression expr only if

the condition was found to be true. In the form of an if-then statement, it
would look like this:

if cond then expr

The second entry in the table is the same as an if-then-else statement.
If the condition is true, MATLAB matches expr,; if false, it matches expr,
instead. This syntax is equivalent to the following programming statement:

if cond then expri else expr2
The condition cond in either of these syntaxes can be any one of the following:

® A specific token, identified by either number or name, is located in the
input string. See “Conditions Based on Tokens” on page 2-95, below.

Regular Expressions

® A lookaround operation results in a match. See “Conditions Based on a
Lookaround Match” on page 2-96, below.

¢ A dynamic expression of the form (?@cmd) returns a nonzero numeric
value. See “Conditions Based on Return Values” on page 2-96, below.

Conditions Based on Tokens

In a conditional expression, MATLAB matches the expression only if the
condition associated with it is met. If the condition is based on a token,
then the condition is met if MATLAB matches more than one character for
the token in the input string.

To specify a token in a condition, use either the token number or, for tokens
that you have assigned a name to, its name. Token numbers are determined
by the order in which they appear in an expression. For example, if you
specify three tokens in an expression (that is, if you enclose three parts of
the expression in parentheses), then you would refer to these tokens in a
condition statement as 1, 2, and 3.

The following example uses the conditional statement (?(1)her|his) to
match the string regardless of the gender used. You could translate this into
the phrase, “if token 1 is found (i.e., Mr is followed by the letter s), then
match her, else match his:

expr = 'Mr(s?)\..*?(?(1)her|his) son';

[mat tok] = regexp('Mr. Clark went to see his son',

expr, 'match', 'tokens')

mat =

'Mr. Clark went to see his son'
tok =

{1x2 cell}
tok{:}
ans =

v 'his'

In the second part of the example, the token s is found and MATLAB matches
the word her:

2-95

2 Basic Program Components

2-96

[mat tok] = regexp('Mrs. Clark went to see her son',
expr, 'match', 'tokens')
mat =
'Mrs. Clark went to see her son'
tok =
{1x2 cell}

tok{:}

s' "her'

Note When referring to a token within a condition, use just the number of
the token. For example, refer to token 2 by using the number 2 alone, and
not \2 or $2.

Conditions Based on a Lookaround Matich

Lookaround statements look for text that either precedes or follows an
expression. If this lookaround text is located, then MATLAB proceeds to
match the expression. You can also use lookarounds in conditional statements.
In this case, if the lookaround text is located, then MATLAB considers the
condition to be met and matches the associated expression. If the condition is
not met, then MATLAB matches the else part of the expression.

Conditions Based on Return Values

MATLAB supports different types of dynamic expressions. One type of
dynamic expression, having the form (?@cmd), enables you to execute a
MATLAB command (shown here as cmd) while matching an expression.
You can use this type of dynamic expression in a conditional statement if
the command in the expression returns a numeric value. The condition is
considered to be met if the return value is nonzero.

Dynamic Regular Expressions

In a dynamic expression, you can make the pattern that you want regexp to
match dependent on the content of the input string. In this way, you can
more closely match varying input patterns in the string being parsed. You
can also use dynamic expressions in replacement strings for use with the

Regular Expressions

regexprep function. This gives you the ability to adapt the replacement text
to the parsed input.

You can include any number of dynamic expressions in the match_expr or
replace_expr arguments of these commands:

regexp(string, match_expr)
regexpi(string, match_expr)
regexprep(string, match_expr, replace_expr)

MATLAB supports three types of dynamic operators for use in a match
expression. See “Dynamic Operators for the Match Expression” on page 2-98
for more information.

Operator | Usage

(??expr) | Parse expr as a separate regular expression, and include the
resulting string in the match expression. This gives you the
same results as if you called regexprep inside of a regexp
match expression.

(?@cmd) Execute the MATLAB command cmd, discarding any output
that may be returned. This is often used for diagnosing a
regular expression.

(??@cmd) | Execute the MATLAB command cmd, and include the string
returned by cmd in the match expression. This is a combination
of the two dynamic syntaxes shown above: (??expr) and
(?@cmd).

MATLAB supports one type of dynamic expression for use in the replacement
expression of a regexprep command. See “Dynamic Operators for the
Replacement Expression” on page 2-103 for more information.

Operator | Usage

${cmd} Execute the MATLAB command cmd, and include the string
returned by cmd in the replacement expression.

2-97

2 Basic Program Components

Example of a Dynamic Expression

As an example of a dynamic expression, the following regexprep command
correctly replaces the term internationalization with its abbreviated form,
i18n. However, to use it on a different term such as globalization, you have
to use a different replacement expression:

match_expr = ' (~\w) (\w*) (\w$) ';

replace_expri = '$118$3';
regexprep('internationalization', match_expr, replace_expri)
ans =

i18n

replace_expr2 = '$111$3';
regexprep('globalization', match_expr, replace_expr2)
ans =

giin

Using a dynamic expression ${num2str(length($2))} enables you to base
the replacement expression on the input string so that you do not have to
change the expression each time. This example uses the dynamic syntax
${cmd} from the second table shown above:

match_expr = '(~\w) (\w*) (\w$) ';
replace_expr = '1{num2str(length($2))}$3"';

regexprep('internationalization', match_expr, replace_expr)
ans =
i18n

regexprep('globalization', match_expr, replace_expr)
ans =
giin

Dynamic Operators for the Match Expression

There are three types of dynamic expressions you can use when composing
a match expression:

¢ “Dynamic Expressions That Modify the Match Expression — (??expr)” on
page 2-99

2-98

Regular Expressions

¢ “Dynamic Commands That Modify the Match Expression — (??@cmd)” on
page 2-100

¢ “Dynamic Commands That Serve a Functional Purpose — (?@cmd)” on
page 2-101

The first two of these actually modify the match expression itself so that it
can be made specific to changes in the contents of the input string. When
MATLAB evaluates one of these dynamic statements, the results of that
evaluation are included in the same location within the overall match
expression.

The third operator listed here does not modify the overall expression, but
instead enables you to run MATLAB commands during the parsing of a
regular expression. This functionality can be useful in diagnosing your
regular expressions.

Dynamic Expressions That Modify the Match Expression — (??expr).
The (??expr) operator parses expression expr, and inserts the results back
into the match expression. MATLAB then evaluates the modified match
expression.

Here is an example of the type of expression that you can use with this
operator:

str = {'BXXXXX', '8XXXXXXXX', '1X'};
regexp(str, '~(\d+)(??X{$1})$', 'match', 'once')

The purpose of this particular command is to locate a series of X characters
in each of the strings stored in the input cell array. Note however that the
number of Xs varies in each string. If the count did not vary, you could use the
expression X{n} to indicate that you want to match n of these characters. But,
a constant value of n does not work in this case.

The solution used here is to capture the leading count number (e.g., the 5 in
the first string of the cell array) in a token, and then to use that count in a
dynamic expression. The dynamic expression in this example is (??X{$1}),
where $1 is the value captured by the token \d+. The operator {$1} makes a
quantifier of that token value. Because the expression is dynamic, the same
pattern works on all three of the input strings in the cell array. With the first

2-99

2 Basic Program Components

2-100

input string, regexp looks for five X characters; with the second, it looks for
eight, and with the third, it looks for just one:

regexp(str, '~(\d+)(??X{$1})$', 'match', 'once')
ans =
'EXXXXX! "BXXXXXXXX! "1X!

Dynamic Commands That Modify the Match Expression — (??2@cmd).
MATLAB uses the (??@function) operator to include the results of a
MATLAB command in the match expression. This command must return a
string that can be used within the match expression.

The regexp command below uses the dynamic expression (??2@f1lilplr($1))
to locate a palindrome string, “Never Odd or Even”, that has been embedded
into a larger string:

regexp(pstr, '(.{3,}).?2(??2efliplr($1))', 'match')

The dynamic expression reverses the order of the letters that make up the
string, and then attempts to match as much of the reversed-order string as
possible. This requires a dynamic expression because the value for $1 relies
on the value of the token (.{3,}):

% Put the string in lowercase.
str = lower(...
'Find the palindrome Never 0dd or Even in this string');

% Remove all nonword characters.

str = regexprep(str, "\Wx', '")

str =
findthepalindromeneveroddoreveninthisstring

% Now locate the palindrome within the string.
palstr = regexp(str, '(.{3,}).?2(??@fliplr($1))', 'match')
str =

'neveroddoreven'

Dynamic expressions in MATLAB have access to the currently active
workspace. This means that you can change any of the functions or variables
used in a dynamic expression just by changing variables in the workspace.
Repeat the last command of the example above, but this time define the

Regular Expressions

function to be called within the expression using a function handle stored in
the base workspace:

fun = @fliplr;

palstr = regexp(str, '(.{3,}).?2(??@fun($1))', 'match')
palstr =
‘neveroddoreven’

Dynamic Commands That Serve a Functional Purpose — (?@cmd). The
(?@cmd) operator specifies a MATLAB command that regexp or regexprep
is to run while parsing the overall match expression. Unlike the other
dynamic expressions in MATLAB, this operator does not alter the contents
of the expression it is used in. Instead, you can use this functionality to get
MATLAB to report just what steps it is taking as it parses the contents of one
of your regular expressions.

The following example parses a word for zero or more characters followed by
two identical characters followed again by zero or more characters:

regexp('mississippi’', ‘"\w*(\w)\1\w*', 'match')
ans =
‘mississippi’

To track the exact steps that MATLAB takes in determining the match, the
example inserts a short script (?@disp($1)) in the expression to display

the characters that finally constitute the match. Because the example uses
greedy quantifiers, MATLAB attempts to match as much of the string as
possible. So, even though MATLAB finds a match toward the beginning of the
string, it continues to look for more matches until it arrives at the very end of
the string. From there, it backs up through the letters i then p and the next
p, stopping at that point because the match is finally satisfied:

regexp('mississippi', '\w*(\w) (?@disp($1))\1\w*');
i
p
p

Now try the same example again, this time making the first quantifier lazy
(*?). Again, MATLAB makes the same match:

2-101

2 Basic Program Components

regexp('mississippi', "\w*?(\w)\1\w*', 'match')
ans =
'mississippi’

But by inserting a dynamic script, you can see that this time, MATLAB has
matched the string quite differently. In this case, MATLAB uses the very first
match it can find, and does not even consider the rest of the string:

regexp('mississippi', '\w*?(\w) (?@disp($1))\1\w*';)
m
i
S

To demonstrate how versatile this type of dynamic expression can be, consider
the next example that progressively assembles a cell array as MATLAB
iteratively parses the input string. The (?!) operator found at the end of the
expression is actually an empty lookahead operator, and forces a failure at
each iteration. This forced failure is necessary if you want to trace the steps
that MATLAB is taking to resolve the expression.

MATLAB makes a number of passes through the input string, each time
trying another combination of letters to see if a fit better than last match can
be found. On any passes in which no matches are found, the test results in
an empty string. The dynamic script (?@if (~isempty($&))) serves to omit
these strings from the matches cell array:

matches = {};
expr = ['(Euler\s)?(Cauchy\s)?(Boole)?(?@if (~isempty($&)),"
'matches{end+1}=$&;end) (?!)'];

regexp('Euler Cauchy Boole', expr);

matches
matches =

"Euler Cauchy Boole' '"Euler Cauchy ' "Euler '
'Cauchy Boole' ‘Cauchy ' 'Boole’

The operators $& (or the equivalent $0), $°, and $' refer to that part of the
input string that is currently a match, all characters that precede the current
match, and all characters to follow the current match, respectively. These

Regular Expressions

operators are sometimes useful when working with dynamic expressions,

particularly those that employ the (?@cmd) operator.

This example parses the input string looking for the letter g. At each iteration
through the string, regexp compares the current character with g, and not
finding it, advances to the next character. The example tracks the progress of
scan through the string by marking the current location being parsed with a

~ character.

(The $° and $- operators capture that part of the string that precedes and
follows the current parsing location. You need two single-quotation marks

($'"') to express the sequence $- when it appears within a string.)

str = 'abcdefghij';

expr = '(?@disp(sprintf('‘'starting match:

regexp(str, expr, 'once');

starting
starting
starting
starting
starting
starting
starting

Dynamic Operators for the Replacement Expression

match:
match:
match:
match:
match:
match:
match:

[~abcdefghij]
[a~bcdefghij]
[ab”~cdefghij]
[abc~defghij]
[abcd~efghij]
[abcde~fghij]
[abcdef~ghij]

$"%s]'',$°,$'')))g’;

The three types of dynamic expressions discussed above can be used only
in the match expression (second input) argument of the regular expression
functions. MATLAB provides one more type of dynamic expression; this one
is for use in a replacement string (third input) argument of the regexprep

function.

Dynamic Commands That Modify the Replacement Expression —
${cmd}. The ${cmd} operator modifies the contents of a regular expression
replacement string, making this string adaptable to parameters in the
input string that might vary from one use to the next. As with the other
dynamic expressions used in MATLAB, you can include any number of these

expressions within the overall replacement expression.

2-103

2 Basic Program Components

2-104

In the regexprep call shown here, the replacement string is
'${convert($1,$2)}"'. In this case, the entire replacement string is a
dynamic expression:

regexprep('This highway is 125 miles long',
P\d+H\L2NdF) AW (\w+) T, "${convert($1,$2)}")

The dynamic expression tells MATLAB to execute a function named convert
using the two tokens (\d+\.?\d*) and (\w+), derived from the string being

matched, as input arguments in the call to convert. The replacement string
requires a dynamic expression because the values of $1 and $2 are generated
at runtime.

The following example defines the file named convert that converts
measurements from imperial units to metric. To convert values from the
string being parsed, regexprep calls the convert function, passing in values
for the quantity to be converted and name of the imperial unit:

function valout = convert(valin, units)
switch(units)
case 'inches'
fun = @(in)in .* 2.54; uout = 'centimeters';
case 'miles'
fun = @(mi)mi .* 1.6093; uout
case 'pounds'
fun = @(lb)lb .* 0.4536; uout
case 'pints'

'kilometers';

‘kilograms';

fun = @(pt)pt .* 0.4731; wuout = 'litres';
case 'ounces'
fun = @(oz)oz .* 28.35; uout = 'grams';
end
val = fun(str2num(valin));
valout = [num2str(val) ' ' uout];

regexprep('This highway is 125 miles long',
C\d+\L2\dF) \W(\w+) ', '${convert($1,$2)}")
ans =
This highway is 201.1625 kilometers long

Regular Expressions

regexprep('This pitcher holds 2.5 pints of water',
P\d+H\L2NdF) AW (\w+) T, "${convert($1,$2)}")
ans =
This pitcher holds 1.1828 litres of water

regexprep('This stone weighs about 10 pounds', .
P\d+\ L 2NdF) AW (\w+) T, "${convert($1,%$2)}")
ans =
This stone weighs about 4.536 kilograms

As with the (??@) operator discussed in an earlier section, the ${ } operator
has access to variables in the currently active workspace. The following
regexprep command uses the array A defined in the base workspace:

A = magic(3)

A =
8 1 6
3 5 7
4 9 2

regexprep('The columns of matrix _nam are _val',
{'_nam', '_val'},
{'A', '"${sprintf(''%d%d%sd '', A)}'})
ans =
The columns of matrix A are 834 159 672

String Replacement

The regexprep function enables you to replace a string that is identified
by a regular expression with another string. The following syntax replaces
all occurrences of the regular expression expr in string str with the string
repstr. The new string is returned in s. If no matches are found, return
string s is the same as input string str.

s = regexprep('str', 'expr', 'repstr')

The replacement string can include any ordinary characters and also any of
the operators shown in the following table:

2-105

2 Basic Program Components

2-106

Operator

Usage

Operators from the “Character
Representation” on page 2-73 table

The character represented by the
operator sequence

$°

That part of the input string that

nracadac tha enivrrant mateh

$& or $0 That part of the input string that is
currently a match

$! That part of the input string that
follows the current match. In
MATLAB, use $'' to represent the
character sequence $'

$N The string represented by the token
identified by the number N

$<name> The string represented by the token
identified by name

${cmd} The string returned when MATLAB

executes the command cmd

You can capture parts of the input string as tokens and then reuse them in
the replacement string. Specify the parts of the string to capture using the
token capture operator (...). Specify the tokens to use in the replacement
string using the operators $1, $2, $N to reference the first, second, and Nth
tokens captured. (See the section on “T'okens” on page 2-87 and the example
“Using Tokens in a Replacement String” on page 2-92 in this documentation
for information on using tokens.)

Note When referring to a token within a replacement string, use the number
of the token preceded by a dollar sign. For example, refer to token 2 by using
$2, and not 2 or \2.

The following example uses both the ${cmd} and $N operators in the
replacement strings of nested regexprep commands to capitalize the first
letter of each sentence. The inner regexprep looks for the start of the entire
string and capitalizes the single instance; the outer regexprep looks for the
first letter following a period and capitalizes the two instances:

Regular Expressions

s1 = 'here are a few sentences.';

s2 = 'none are capitalized.';

s3 = 'let''s change that.';

str = [s1 ' ' s2 ' ' s3]

regexprep(regexprep(str, '(~.)"', '${upper($1)}'), ...

"(?<=\.\s*)([a-z]) ", "${upper($1)}")

ans =
Here are a few sentences. None are capitalized. Let's change that.

Make regexprep more specific to your needs by specifying any of a number
of options with the command. See the regexprep reference page for more
information on these options.

Handling Multiple Strings

You can use any of the MATLAB regular expression functions with cell arrays
of strings as well as with single strings. Any or all of the input parameters
(the string, expression, or replacement string) can be a cell array of strings.
The regexp function requires that the string and expression arrays have

the same number of elements. The regexprep function requires that the
expression and replacement arrays have the same number of elements. (The
cell arrays do not have to have the same shape.)

Whenever either input argument in a call to regexp, or the first input
argument in a call to regexprep function is a cell array, all output values are
cell arrays of the same size.

This section covers the following topics:

¢ “Finding a Single Pattern in Multiple Strings” on page 2-107
¢ “Finding Multiple Patterns in Multiple Strings” on page 2-109
e “Replacing Multiple Strings” on page 2-109

Finding a Single Pattern in Multiple Strings

The example shown here uses the regexp function on a cell array of strings
cstr. It searches each string of the cell array for consecutive matching letters

2-107

2 Basic Program Components

(e.g., '00"'). The function returns a cell array of the same size as the input
array. Each row of the return array contains the indices for which there was a
match against the input cell array.

Here is the input cell array:

cstr = {

'Whose woods these are I think I know.' ;
'His house is in the village though;' ;
'He will not see me stopping here' ;
'To watch his woods fill up with snow.'};

Find consecutive matching letters by capturing a letter as a token (.) and
then repeating that letter as a token reference, \1:

idx = regexp(cstr, '(.)\1');

whos idx
Name Size Bytes Class
idx 4x1 296 cell array

idx{:}

ans = % 'Whose woods these are I think I know.'

8 % | 8

ans = % 'His house is in the village though;"
23 % |23

ans = % 'He will not see me stopping here'

6 14 23

o°

|6 |14 |23

o°

ans =
15 22

‘To watch his woods fill up with snow.'
|15 | 22

o°

To return substrings instead of indices, use the 'match' parameter:

mat = regexp(cstr, '(.)\1', 'match');
mat{3}
ans =

11! ‘ee’ "pp’

2-108

Regular Expressions

Finding Multiple Patterns in Multiple Strings

This example uses a cell array of strings in both the input string and the
expression. The two cell arrays are of different shapes: cstr is 4-by-1 while
expr is 1-by-4. The command is valid as long as they both have the same
number of cells.

Find uppercase or lowercase 'i' followed by a white-space character in
str{1}, the sequence 'hou' in str{2}, two consecutive matching letters in
str{3}, and words beginning with 'w' followed by a vowel in str{4}.

expr = {'i\s', 'hou', '(.)\1', '\<w[aeiou]'};
idx = regexpi(cstr, expr);

idx{:}
ans = % 'Whose woods these are I think I know.'
23 31 % |23 |31
ans = % 'His house is in the village though;"
5 30 % |5 |30
ans = % 'He will not see me stopping here'

6 14 23

o°

|6 |14 |23

o°

ans = ‘To watch his woods fill up with snow.'
4 14 28 % | 4 |14 |28

Note that the returned cell array has the dimensions of the input string,
cstr. The dimensions of the return value are always derived from the input
string, whenever the input string is a cell array. If the input string is not a
cell array, then it is the dimensions of the expression that determine the
shape of the return array.

Replacing Multiple Strings

When replacing multiple strings with regexprep, use a single replacement
string if the expression consists of a single string. This example uses a
common replacement value (' - - ') for all matches found in the multiple string
input cstr. The function returns a cell array of strings having the same
dimensions as the input cell array:

s = regexprep(cstr, '(.)\1', '--', 'ignorecase')

2-109

2 Basic Program Components

'Whose w--ds these are I think I know.'
'His house is in the vi--age though;'
'He wi-- not s-- me sto--ing here'

'To watch his w--ds fi-- up with snow.'

You can use multiple replacement strings if the expression consists of
multiple strings. In this example, the input string and replacement string
are both 4-by-1 cell arrays, and the expression is a 1-by-4 cell array. As
long as the expression and replacement arrays contain the same number of
elements, the statement is valid. The dimensions of the return value match
the dimensions of the input string:

expr
repl

{'i\s', 'hou', '"(.)\1', '"\<w[aeiou]'};
{I_1_I; I_2_I; I_3_I; I_4_I};

s = regexprep(cstr, expr, repl, 'ignorecase')

'Whose w-3-ds these are -1-think -1-know.'
'His -2-se is in the vi-3-age t-2-gh;'
'He -4--3- not s-3- me sto-3-ing here'
'To -4-tch his w-3-ds fi-3- up -4-th snow.'

Function, Mode Options, Operator, Return Value
Summaries

¢ “Function Summary” on page 2-111
® “Mode Options Summary” on page 2-111
® “Operator Summary” on page 2-112

e “Return Value Summary” on page 2-118

2-110

Regular Expressions

Function Summary

MATLAB Regular Expression Functions

Function Description

regexp Match regular expression.

regexpi Match regular expression, ignoring case.
regexprep Replace string using regular expression.
regexptranslate Translate string into regular expression.

Mode Options Summary

Mode Keyword Flag Description

ignorecase (?1) Do not consider letter case when matching
patterns to a string. (The default for
regexpi)

matchcase (?-1) Letter case must match when matching
patterns to a string. (The default for
regexp)

dotall (?s) Match dot (' . ') in the pattern string with
any character. (The default)

dotexceptnewline (?-s) Match dot in the pattern with any character
that is not a newline.

stringanchors (?m) Match the * and $ metacharacters at the
beginning and end of a string. (The default)

lineanchors (?-m) Match the * and $ metacharacters at the

beginning and end of a line.

2-111

2 Basic Program Components

Mode Keyword Flag Description
freespacing (?x) Ignore spaces and comments when parsing
the string. (You must use '\ ' and '\#' to
match space and # characters.)
literalspacing (?-x) Parse space characters and comments (the

character and any text to the right of it)
in the same way as any other characters in
the string. (The default)

2-112

Character Types

Operator Summary

Operator Usage
Any single character, including white space

[c,cycs] Any character contained within the brackets: ¢, or ¢,
or C,

["c,cyC,] Any character not contained within the brackets:
anything but ¢, or ¢, or ¢,

[c,-c,] Any character in the range of ¢, through c,

\s Any white-space character; equivalent to [
\FAn\r\t\v]

\S Any nonwhitespace character; equivalent to
[~ \f\n\r\t\v]

\w Any alphabetic, numeric, or underscore character
(For English character sets, this is equivalent to
[a-zA-Z_0-9].)

\W Any character that is not alphabetic, numeric,
or underscore (For English character sets, this is
equivalent to ["a-zA-Z 0-9].)

\d Any numeric digit; equivalent to [0-9]

\D Any nondigit character; equivalent to [*0-9]

Regular Expressions

Character Types (Continued)

Operator

Usage

\oN or \o{N}

Character of octal value N

\xN or \x{N}

Character of hexadecimal value N

Character Representation

Operator Usage

\\ Backslash

\a Alarm (beep)

\b Backspace

\f Form feed

\n New line

\r Carriage return

\t Horizontal tab

\v Vertical tab

\char If a character has special meaning in a regular

expression, precede it with backslash (\) to match it
literally.

Grouping Operators

Operator Usage

(expr) Group regular expressions and capture tokens.
(?:expr) Group regular expressions, but do not capture tokens.
(?>expr) Group atomically.

expr,|expr,

Match expression expr, or expression expr,.

2-113

2 Basic Program Components

Nonmatching Operators

Operator

Usage

(?#comment)

Insert a comment into the expression. Comments are
ignored in matching.

Positional Operators

Operator

Usage

“expr

Match expr if it occurs at the beginning of the input
string.

expr$

Match expr if it occurs at the end of the input string.

\<expr

Match expr when it occurs at the beginning of a
word.

expr\>

Match expr when it occurs at the end of a word.

\<expr\>

Match expr when it represents the entire word.

Lookaround Operators

Operator

Usage

(?=expr)

Look ahead from current position and test if expr
is found.

(?lexpr)

Look ahead from current position and test if expr
is not found

(?<=expr)

Look behind from current position and test if expr
is found.

(?<!expr)

Look behind from current position and test if expr
is not found.

2-114

Regular Expressions

Quantifiers

Operator Usage

expr{m,n} Match expr when it occurs at least m times but no more
than n times consecutively.

expr{m,} Match expr when it occurs at least m times consecutively.

expr{n} Match expr when it occurs exactly n times consecutively.
Equivalent to {n,n}.

expr? Match expr when it occurs O times or 1 time. Equivalent
to {0,1}.

expr* Match expr when it occurs O or more times
consecutively. Equivalent to {0, }.

expr+ Match expr when it occurs 1 or more times
consecutively. Equivalent to {1,}.

g_expr Match as much of the quantified expression as possible,
where q_expr represents any of the expressions shown
in the first six rows of this table.

g_expr+ Match as much of the quantified expression as possible,
but do not rescan any portions of the string if the initial
match fails.

g_expr? Match only as much of the quantified expression as
necessary.

Ordinal Token Operators

Operator Usage

(expr) Capture in a token all characters matched by the
expression within the parentheses.

\N Match the N** token generated by this command. That is,
use \1 to match the first token, \2 to match the second,
and so on.

2-115

2 Basic Program Components

2-116

Ordinal Token Operators (Continued)

Operator

Usage

$N

Insert the match for the N** token in the replacement
string. If N is equal to zero, then insert the entire match
in the replacement string. (Used only by the regexprep
function.)

(2(N)s1]|s2)

If N*P token is found, then match s1; otherwise, match s2.

Named Token Operators

Operator Usage

(?<name>expr) Capture in a token all characters matched by the
expression within the parentheses. Assign a name value
to the token.

\k<name> Match the token referred to by name.

$<name> Insert the match for named token in a replacement

string. (Used only with the regexprep function.)

(?(name)st|s2)

If named token is found, then match s1; otherwise,
match s2.

Conditional Expression Operators

Operator

Usage

(?(cond)expr)

If condition cond is true, then match expression
expr.

(?(cond)expr,|expr,) If condition cond is true, then match expression

expr,. Otherwise match expression expr,.

Regular Expressions

Dynamic Expression Operators

Operator

Usage

(??expr)

Parse expr as a separate regular expression, and
include the resulting string in the match expression.
This gives you the same results as if you called
regexprep inside of a regexp match expression.

(??@cmd)

Execute the MATLAB command represented by cmd,
and include the string returned by the command in
the match expression. This is a combination of the two
dynamic syntaxes shown previously: (??expr) and
(?@cmd).

(?@cmd)

Execute the MATLAB command represented by cmd
and discard any output the command returns. (Helpful
for diagnosing regular expressions).

${cmd}

Execute the MATLAB command represented by cmd,
and include the string returned by the command in the
replacement expression.

Replacement String Operators

Operator Usage

Operators from “Character The character represented by the

Representation” on page 2-73 operator sequence

table

$' That part of the input string that
precedes the current match

$& or $0 That part of the input string that is
currently a match

$' That part of the input string that
follows the current match (In
MATLAB, use $'' to represent the
character sequence $'.)

$N The string represented by the token
identified by name

2-117

2 Basic Program Components

Replacement String Operators (Continued)

Operator Usage

$<name> The string represented by the token

identified by name

${cmd} The string returned when MATLAB

executes the command cmd

Return Value Summary

Qualifier Description Default
Order

start Row vector containing the starting index of each substring of | 1
str that matches expr

end Row vector containing the ending index of each substring of | 2
str that matches expr

tokenExtents Cell array containing the starting and ending indices of each | 3
substring of str that matches a token in expr (This is a
double array when used with 'once'.)

match Cell array containing the text of each substring of str that 4
matches expr (This is a string when used with 'once'.)

tokens Cell array of cell arrays of strings containing the text of each | 5
token captured by regexp (This is a cell array of strings when
used with 'once'.)

names Structure array containing the name and text of each named | 6
token captured by regexp (If there are no named tokens in
expr, regexp returns a structure array with no fields.)
Field names of the returned structure are set to the token
names, and field values are the text of those tokens. Named
tokens are generated by the expression (?<tokenname>).

split Cell array containing those parts of the input string that are | 7

delimited by substrings returned when using the regexp
'match' option

2-118

Symbol Reference

Symbol Reference

In this section...
“Asterisk — *” on page 2-120
“At — @” on page 2-120

“Colon — ” on page 2-121

“Comma — ,” on page 2-122

“Curly Braces — {}” on page 2-123
“Dot — .” on page 2-123

“Dot-Dot — ..” on page 2-124
“Dot-Dot-Dot (Ellipsis) — ...” on page 2-124
“Dot-Parentheses — .()” on page 2-126
“Exclamation Point — !” on page 2-126
“Parentheses — ()” on page 2-126
“Percent — %” on page 2-127
“Percent-Brace — %{ %}” on page 2-128
“Plus — +” on page 2-128

“Semicolon — ;” on page 2-128

5 99

“Single Quotes — ’” on page 2-129

“Space Character” on page 2-130

“Slash and Backslash — / \” on page 2-130
“Square Brackets — []” on page 2-131

“Tilde — ~” on page 2-131

This section does not include symbols used in arithmetic, relational, and
logical operations. For a description of these symbols, see the top of the
Alphabetical List of functions in the MATLAB Help browser.

2-119

2 Basic Program Components

2-120

Asterisk — *

An asterisk in a filename specification is used as a wildcard specifier, as
described below.

Filename Wildcard

Wildcards are generally used in file operations that act on multiple files

or folders. They usually appear in the string containing the file or folder
specification. MATLAB matches all characters in the name exactly except for
the wildcard character *, which can match any one or more characters.

To locate all files with names that start with ' january_' and have a mat
file extension, use

dir('january_*.mat')

You can also use wildcards with the who and whos functions. To get
information on all variables with names starting with 'image' and ending
with 'Offset', use

whos image*Offset

At — @
The @ sign signifies either a function handle constructor or a folder that
supports a MATLAB class.

Function Handle Constructor

The @ operator forms a handle to either the named function that follows the @
sign, or to the anonymous function that follows the @ sign.

Function Handles in General. Function handles are commonly used in
passing functions as arguments to other functions. Construct a function
handle by preceding the function name with an @ sign:

fhandle = @myfun

You can read more about function handles in “Function Handles” on page
1-127.

Symbol Reference

Handles to Anonymous Functions. Anonymous functions give you a quick
means of creating simple functions without having to create your function in
a file each time. You can construct an anonymous function and a handle to
that function using the syntax

fhandle = @(arglist) body

where body defines the body of the function and arglist is the list of
arguments you can pass to the function.

See “Anonymous Functions” on page 4-3 for more information.

Class Folder Designator
An @ sign can indicate the name of a class folder, such as

\@myclass\get.m

See the documentation on “Options for Class Folders” for more information.

Colon —:

The colon operator generates a sequence of numbers that you can use in
creating or indexing into arrays. See“Generating a Numeric Sequence” for
more information on using the colon operator.

Numeric Sequence Range

Generate a sequential series of regularly spaced numbers from first to last
using the syntax first:last. For an incremental sequence from 6 to 17, use

N =6:17

Numeric Sequence Step

Generate a sequential series of numbers, each number separated by a step
value, using the syntax first:step:last. For a sequence from 2 through 38,
stepping by 4 between each entry, use

N = 2:4:38

2-121

2 Basic Program Components

2-122

Indexing Range Specifier
Index into multiple rows or columns of a matrix using the colon operator
to specify a range of indices:

B = A(7, 1:5); % Read columns 1-5 of row 7.
B = A(4:2:8, 1:5); % Read columns 1-5 of rows 4, 6, and 8.
B =A(:, 1:5); % Read columns 1-5 of all rows.

Conversion to Column Vector

Convert a matrix or array to a column vector using the colon operator as a
single index:

A
B

rand(3,4);
A();

Preserving Array Shape on Assignment

Using the colon operator on the left side of an assignment statement, you can
assign new values to array elements without changing the shape of the array:

A = rand(3,4);
A(:) = 1:12;
Comma — ,

A comma is used to separate the following types of elements.

Row Element Separator

When constructing an array, use a comma to separate elements that belong
in the same row:

A = [5.92, 8.13, 3.53]

Array Index Separator

When indexing into an array, use a comma to separate the indices into each
dimension:

Symbol Reference

X =A2, 7, 4)

Function Input and Output Separator

When calling a function, use a comma to separate output and input
arguments:

function [data, text] = xlsread(file, sheet, range, mode)

Command or Statement Separator

To enter more than one MATLAB command or statement on the same line,
separate each command or statement with a comma:

for k = 1:10, sum(A(k)), end

Curly Braces — {}

Use curly braces to construct or get the contents of cell arrays.

Cell Array Constructor
To construct a cell array, enclose all elements of the array in curly braces:

C = {[2.6 4.7 3.9], rand(8)*6, 'C. Coolidge'}

Cell Array Indexing

Index to a specific cell array element by enclosing all indices in curly braces:

A = C{4,7,2}

See the documentation on Cell Arrays for more information.

DO" = e
The single dot operator has the following different uses in MATLAB.

2-123

2 Basic Program Components

2-124

Decimal Point

MATLAB uses a period to separate the integral and fractional parts of a
number.

Structure Field Definition

Add fields to a MATLAB structure by following the structure name with a
dot and then a field name:

funds(5,2) .bondtype = 'Corporate';

See the documentation on “Structures” on page 1-67 for more information.

Object Method Specifier

Specify the properties of an instance of a MATLAB class using the object
name followed by a dot, and then the property name:

val = asset.current_value

See “Defining Your Own Classes” on page 1-171 for more information.

DO"" DO" = oo

Two dots in sequence refer to the parent of the current folder.

Parent Folder

Specify the folder immediately above your current folder using two dots. For
example, to go up two levels in the folder tree and down into the test folder,
use

cd ..\..\test

A series of three consecutive periods (. ..) is the line continuation operator in
MATLAB. This is often referred to as an ellipsis, but it should be noted that
the line continuation operator is a three-character operator and is different

from the single-character ellipsis represented in ASCII by the hexadecimal
number 2026.

Symbol Reference

Line Continuation

Continue any MATLAB command or expression by placing an ellipsis at the
end of the line to be continued:

sprintf('The current value of %s is %d',
vnhame, value)

Entering Long Strings. You cannot use an ellipsis within single quotes
to continue a string to the next line:

string = 'This is not allowed and will generate an
error in MATLAB.'

To enter a string that extends beyond a single line, piece together shorter
strings using either the concatenation operator ([1) or the sprintf function.

Here are two examples:

quotel = [
'Tiger, tiger, burning bright in the forests of the night,'
'what immortal hand or eye could frame thy fearful symmetry?'];
quote2 = sprintf('%s%s%s',
'In Xanadu did Kubla Khan a stately pleasure-dome decree, ',
‘where Alph, the sacred river, ran ',
"through caverns measureless to man down to a sunless sea.');

Defining Arrays. MATLAB interprets the ellipsis as a space character. For
statements that define arrays or cell arrays within [] or {} operators, a space
character separates array elements. For example,

not_valid = [1 2 zeros...
(1,3)]

is equivalent to
not_valid = [1 2 zeros (1,3)]

which returns an error. Place the ellipses so that the interpreted statement
1s valid, such as

valid = [1 2

2-125

2 Basic Program Components

2-126

zeros(1,3)]

Dot-Parentheses — .()
Use dot-parentheses to specify the name of a dynamic structure field.

Dynamic Structure Fields

Sometimes it is useful to reference structures with field names that can
vary. For example, the referenced field might be passed as an argument to a
function. Dynamic field names specify a variable name for a structure field.

The variable fundtype shown here is a dynamic field name:
type = funds(5,2).(fundtype);

See “Creating Field Names Dynamically” on page 1-77 for more information.

Exclamation Point — !

The exclamation point precedes operating system commands that you want to
execute from within MATLAB.

Shell Escape

The exclamation point initiates a shell escape function. Such a function is to
be performed directly by the operating system:

I'rmdir oldtests

See “Shell Escape Functions” on page 2-7 for more information.

Parentheses — ()

Parentheses are used mostly for indexing into elements of an array or for
specifying arguments passed to a called function. Parenthesis also control the
order of operations, and can group a vector visually (such as x = (1:10))
without calling a concatenation function.

Symbol Reference

Array Indexing

When parentheses appear to the right of a variable name, they are indices
into the array stored in that variable:

A(2, 7, 4)

Function Input Arguments

When parentheses follow a function name in a function declaration or call, the
enclosed list contains input arguments used by the function:

function sendmail(to, subject, message, attachments)

Percent — %

The percent sign is most commonly used to indicate nonexecutable text within
the body of a program. This text is normally used to include comments in your
code. Two percent signs, %%, serve as a cell delimiter, described in “Using
Code Cells for Rapid Code Iteration and Publishing Results”. Some functions
also interpret the percent sign as a conversion specifier.

Single Line Comments

Precede any one-line comments in your code with a percent sign. MATLAB
does not execute anything that follows a percent sign (that is, unless the
sign is quoted, '%'):

% The purpose of this routine is to compute
% the value of

See “Help Text” on page 3-13 for more information.

Conversion Specifiers

Some functions, like sscanf and sprintf, precede conversion specifiers with
the percent sign:

sprintf('%s = %d', name, value)

2-127

2 Basic Program Components

2-128

Percent-Brace — %{ %}

The %{ and %} symbols enclose a block of comments that extend beyond one
line.

Block Comments

Enclose any multiline comments with percent followed by an opening or
closing brace.

%{
The purpose of this routine is to compute
the value of

[»)
%}

Note With the exception of whitespace characters, the %{ and %} operators
must appear alone on the lines that immediately precede and follow the block
of help text. Do not include any other text on these lines.

Plus — +

The + sign appears most frequently as an arithmetic operator, but is also
used to designate the names of package folders. For more information, see
“Scoping Classes with Packages”.

Semicolon — ;

The semicolon can be used to construct arrays, suppress output from a
MATLAB command, or to separate commands entered on the same line.

Array Row Separator

When used within square brackets to create a new array or concatenate
existing arrays, the semicolon creates a new row in the array:

A =[5, 8; 3, 4]
A =

5 8

3 4

Symbol Reference

Output Suppression

When placed at the end of a command, the semicolon tells MATLAB not to
display any output from that command. In this example, MATLAB does not
display the resulting 100-by-100 matrix:

A = ones (100, 100);

Command or Statement Separator

Like the comma operator, you can enter more than one MATLAB command
on a line by separating each command with a semicolon. MATLAB suppresses
output for those commands terminated with a semicolon, and displays the
output for commands terminated with a comma.

In this example, assignments to variables A and C are terminated with
a semicolon, and thus do not display. Because the assignment to B is
comma-terminated, the output of this one command is displayed:

A =12.5; B =42.7, C = 1.25;
B

42.7000

Single Quotes — ’ /
Single quotes are the constructor symbol for MATLAB character arrays.

Character and String Constructor

MATLAB constructs a character array from all characters enclosed in single
quotes. If only one character is in quotes, then MATLAB constructs a 1-by-1
array:

S = 'Hello World'

See “Characters and Strings” on page 1-35 for more information.

2-129

2 Basic Program Components

2-130

Space Character

The space character serves a purpose similar to the comma in that it can be
used to separate row elements in an array constructor, or the values returned
by a function.

Row Element Separator

You have the option of using either commas or spaces to delimit the row
elements of an array when constructing the array. To create a 1-by-3 array,
use

A
A =

[5.92 8.13 3.53]
5.9200 8.1300 3.5300

When indexing into an array, you must always use commas to reference each
dimension of the array.

Function Output Separator

Spaces are allowed when specifying a list of values to be returned by a
function. You can use spaces to separate return values in both function
declarations and function calls:

function [data text] = xlsread(file, sheet, range, mode)

Slash and Backslash — / \

The slash (/) and backslash (\) characters separate the elements of a path
or folder string. On Microsoft® Windows®-based systems, both slash and
backslash have the same effect. On The Open Group UNIX®-based systems,
you must use slash only.

On a Windows system, you can use either backslash or slash:

dir([matlabroot '\toolbox\matlab\elmat\shiftdim.m'])
dir([matlabroot '/toolbox/matlab/elmat/shiftdim.m'])

On a UNIX system, use only the forward slash:

dir([matlabroot '/toolbox/matlab/elmat/shiftdim.m'])

Symbol Reference

Square Brackets — []

Square brackets are used in array construction and concatenation, and also in
declaring and capturing values returned by a function.

Array Constructor

To construct a matrix or array, enclose all elements of the array in square
brackets:

A = [5.7, 9.8, 7.3; 9.2, 4.5, 6.4]

Concatenation

To combine two or more arrays into a new array through concatenation,
enclose all array elements in square brackets:

A = [B, eye(6), diag([0:2:10])]

Function Declarations and Calls

When declaring or calling a function that returns more than one output,
enclose each return value that you need in square brackets:

[data, text] = xlsread(file, sheet, range, mode)
Tilde — ~

The tilde character is used as a placeholder for an input or output argument
you want to omit from a function call.

Argument Placeholder

To have the fileparts function return its third output value and skip the
first two, replace arguments one and two with a tilde character:

[~, ~, filenameExt] = fileparts(fileSpec);

2-131

2 Basic Program Components

2-132

Functions and Scripts

¢ “Program Development” on page 3-2

¢ “Working with Functions in Files” on page 3-9

e “Scripts and Functions” on page 3-21

e “Calling Functions” on page 3-27

¢ “Function Arguments” on page 3-41

¢ “Validating Inputs with Input Parser” on page 3-60
¢ “Functions Provided By MATLAB” on page 3-81

3 Functions and Scripts

Program Development

In this section...

“Overview” on page 3-2

“Creating a Program” on page 3-2
“Getting the Bugs Out” on page 3-4
“Cleaning Up the Program” on page 3-5
“Improving Performance” on page 3-5
“Checking It In” on page 3-6

“Protecting Your Source Code” on page 3-6

Overview

As you write a MATLAB function or script, you save it to a file that has a .m
file extension. There are two types of these files you can write: scripts and
functions. This section covers basic program development, describes how to
write and call scripts and functions, and shows how to pass different types of
data when calling a function. Associated with each step of this process are
certain MATLAB tools and utilities that are fully documented in the Desktop
Tools and Development Environment documentation.

For more ideas on good programming style, see “Program Development”

on page 10-18 in the MATLAB Programming Tips documentation. The
Programming Tips section is a compilation of useful pieces of information that
can show you alternate and often more efficient ways to accomplish common
programming tasks while also expanding your knowledge of MATLAB.

Creating a Program

You can type in your program code using any text editor. This section focuses
on using the MATLAB Editor/Debugger for this purpose. The Editor/Debugger
is fully documented in Ways to Edit and Debug Files in the Desktop Tools and
Development Environment documentation.

Program Development

The first step in creating a program is to open an editing window. To create a
file for a new function, type the word edit at the MATLAB command prompt.
To edit an existing file, type edit followed by the file name:

edit drawPlot.m

MATLAB opens a new window for entering your program code. As you type in
your program, MATLAB keeps track of the line numbers in the left column.

Saving the Program

It is usually a good idea to save your program periodically while you are in the
development process. To do this, click File > Save in the Editor/Debugger.
Enter a file name with a .m extension in the Save file as dialog box that
appears and click OK. It is customary and less confusing if you give the file
the same name as the first function in the file.

Running the Program

Before trying to run your program, make sure that its file is on the MATLAB
path. The MATLAB path defines those folders that you want MATLAB to
know about when executing files. The path includes all the folders that
contain functions provided with MATLAB. It should also include any folders
that you use for your own functions.

Use the which function to see if your program is on the path:

which drawPlot
D:\user5\matlab\mywork\drawPlot.m

If not, add its folder to the path using the addpath function:
addpath('D:\user5\matlab\mywork"')

Now you can run the program just by typing the name of the file at the
MATLAB command prompt:

drawPlot (xdata, ydata)

3 Functions and Scripts

3-4

Getting the Bugs Out

In all but the simplest programs, you are likely to encounter some type of
unexpected behavior when you run the program for the first time. Program
defects can show up in the form of warning or error messages displayed in the
command window, programs that hang (never terminate), inaccurate results,
or some number of other symptoms. This is where the second functionality
of the MATLAB Editor/Debugger becomes useful.

The MATLAB Debugger enables you to examine the inner workings of your
program while you run it. You can stop the execution of your program at any
point and then continue from that point, stepping through the code line by
line and examining the results of each operation performed. You have the
choice of operating the debugger from the Editor window that displays your
program, from the MATLAB command line, or both.

The Debugging Process

You can step through the program right from the start if you want. For
longer programs, you will probably save time by stopping the program
somewhere in the middle and stepping through from there. You can do this
by approximating where the program code breaks and setting a stopping
point (or breakpoint) at that line. Once a breakpoint has been set, start
your program from the MATLAB command prompt. MATLAB opens an
Editor/Debugger window (if it is not already open) showing a green arrow
pointing to the next line to execute.

From this point, you can examine any values passed into the program, or the
results of each operation performed. You can step through the program line
by line to see which path is taken and why. You can step into any functions
that your program calls, or choose to step over them and just see the end
results. You can also modify the values assigned to a variable and see how
that affects the outcome.

To learn about using the MATLAB Debugger, see “Debugging Process
and Features” in the Desktop Tools and Development Environment
documentation. Type help debug for a listing of all MATLAB debug functions.

For programming tips on how to debug, see “Debugging” on page 10-21 in the
Programming Tips documentation.

Program Development

Cleaning Up the Program

Even after your program is bug-free, there are still some steps you can take to
improve its performance and readability. The MATLAB Code Analyzer utility
generates a report that can highlight potential problems in your code. For
example, you might be using the element-wise AND operator (&) where the
short-circuit AND (&&) is more appropriate. You might be using the find
function in a context where logical subscripting would be faster.

MATLAB offers the Code Analyzer and several other reporting utilities to
help you make the finishing touches to your program code. These tools are
described under “Tuning and Managing MATLAB Code Files”in the Desktop
Tools and Development Environment documentation.

Improving Performance

The MATLAB Profiler generates a report that shows how your program
spends its processing time. For details about using the MATLAB Profiler,
see Profiling for Improving Performance in the MATLAB Desktop Tools
and Development Environment documentation. For tips on other ways to
improve the performance of your programs, see Chapter 8, “Performance” in
the Programming Fundamentals documentation.

Three types of reports are available:

e “Summary Report” on page 3-5
e “Detail Report” on page 3-5
e “File Listing” on page 3-6

Summary Report

The summary report provides performance information on your main program
and on every function it calls. This includes how many times each function is
called, the total time spent in that function, along with a bar graph showing
the relative time spent by each function.

Detail Report

When you click a function name in the summary report, MATLAB displays a
detailed report on that function. This report shows the lines of that function

3-5

3 Functions and Scripts

3-6

that take up the most time, the time spent executing that line, the percentage
of total time for that function that is spent on that line, and a bar graph
showing the relative time spent on the line.

File Listing

The detail report for a function also displays all code for that function. This
listing enables you to view the time-consuming code in the context of the
entire function body. For every line of code that takes any significant time,
additional performance information is provided by the statistics and by the
color and degree of highlighting of the program code.

Checking It In

Source control systems offer a way to manage large numbers of files while
they are under development. They keep track of the work done on these files
as your project progresses, and also ensure that changes are made in a secure
and orderly fashion.

If you have a source control system available, you will probably want to
check your files into the system once they are complete. If further work is
required on one of those files, you just check it back out, make the necessary
modifications, and then check it back in again.

MATLAB provides an interface to external source control systems so that you
can check files in and out directly from your MATLAB session. See Revision
Control in the Desktop Tools and Development Environment documentation
for instructions on how to use this interface.

Protecting Your Source Code

Although MATLAB source (.m) code is executable by itself, the contents

of MATLAB source files are easily accessed, revealing design and
implementation details. If you do not want to distribute your proprietary
application code in this format, you can use one of these more secure options
instead:

® Deploy as P-code — Convert some or all of your source code files to a
content-obscured form called a P-code file (from its .p file extension), and
distribute your application code in this format.

Program Development

e Compile into binary format — Compile your source code files using the
MATLAB Compiler to produce a standalone application. Distribute the
latter to end users of your application.

In general, if you want to run the code as a standalone application outside

of MATLAB, it is best to use the MATLAB® Compiler™ to make your code
secure . If you plan to run the code within the MATLAB environment, there is
no need to run the Compiler. Instead, convert to P-code those modules of your
source code that need to be secure.

Building a Content Obscured Format with P-Code

A P-code file behaves the same as the MATLAB source from which it was
produced. The P-code file also runs at the same speed as the source file.
Because the contents of P-code files are purposely obscured, they offer a
secure means of distribution outside of your organization.

Note Because users of P-code files cannot view the MATLAB code, consider
providing diagnostics to enable a user to proceed in the event of an error.

Building the P-Code File. To generate a P-code file, enter the following
command in the MATLAB Command Window:

pcode filel file2,

The command produces the files, filel.p, file2.p, and so on. To convert all
.m source files residing in your current folder to P-code files, use the command:

pcode *.m

See the pcode function reference page for a description of all syntaxes for
generating P-code files.

Invoking the P-Code File. You invoke the resulting P-code file in the same
way you invoke the MATLAB .m source file from which it was derived. For
example, to invoke file myfun.p, type

[out, out2, ...] = myfun(int, in2, ...);

3-7

3 Functions and Scripts

To invoke script myscript.p, type

myscript;

When you call a P-code file, MATLAB gives it execution precedence over its
corresponding .m source file. This is true even if you happen to change the
source code at some point after generating the P-code file. Remember to
remove the .m source file before distributing your code.

Running Older P-Code Files on Later Versions of MATLAB. P-Code files
are designed to be independent of the release under which they were created
and the release in which they are used (backward and forward compatibility).
New and deprecated MATLAB features can be a problem, but it is the same
problem that would exist if you used the original MATLAB input file. To fix
errors of this kind in a P-code file, fix the corresponding MATLAB input file
and create a new P-code file.

P-code files built using MATLAB Version 7.4 and earlier have a different
format than those built with more recent versions of MATLAB. You still can
use these older P-code files when you run MATLAB 7.4 and later, but this
capability could be removed in a future release. MathWorks recommends that
you rebuild any P-code files that were built with MATLAB 7.4 or earlier using
a more recent version of MATLAB, and then redistribute them as necessary.

Building a Standalone Executable

Another way to protect your source code is to build it into a standalone
executable and distribute the executable, along with any other necessary
files, to external customers. You must have the MATLAB Compiler and a
supported C or C++ compiler installed to prepare files for deployment. The
end user, however, does not need MATLAB.

To build a standalone application for your MATLAB application, develop and
debug your application following the usual procedure for MATLAB program
files. Then, generate the executable file or files following the instructions in
“Steps by the Programmer to Deploy to End Users” in the MATLAB Compiler
documentation.

Working with Functions in Files

Working with Functions in Files

In this section...

“Overview” on page 3-9

“Types of Program Files” on page 3-9

“Basic Parts of a Program File” on page 3-10
“Creating a Program File” on page 3-15
“Providing Help for Your Program” on page 3-18
“Cleaning Up the File When Done” on page 3-18

Overview

The MATLAB software provides a full programming language that enables
you to write a series of MATLAB statements into a file and then execute
them with a single command. You write your program in an ordinary text
file, giving the file a name of filename.m. The term you use for filename
becomes the new command that MATLAB associates with the program. The
file extension of .m makes this a MATLAB program file.

Types of Program Files

Program files can be scripts that simply execute a series of MATLAB
statements, or they can be functions that also accept input arguments and
produce output.

MATLAB scripts:

¢ Are useful for automating a series of steps you need to perform many times.
* Do not accept input arguments or return output arguments.

e Store variables in a workspace that is shared with other scripts and with
the MATLAB command line interface.

MATLAB functions:

¢ Are useful for extending the MATLAB language for your application.

3 Functions and Scripts

3-10

e Can accept input arguments and return output arguments.

® Store variables in a workspace internal to the function.

Basic Parts of a Program File

This simple function shows the basic parts of a program file. Any line that
begins with % is not executable:

function f = fact(n) Function
definition line
% Compute a factorial value. H1 line

o°

FACT(N) returns the factorial of N, Help text
usually denoted by N!

o°

o°

Put simply, FACT(N) is PROD(1:N). Comment
= prod(1:n); Function body

—

This table briefly describes each of these program file parts. Both functions
and scripts can have all of these parts, except for the function definition line
which applies to functions only. The sections that follow the table describe
these parts in greater detail.

File Element Description

Function definition line | Defines the function name, and the number and
(functions only) order of input and output arguments

H1 line A one line summary description of the program,

displayed when you request help on an entire
folder, or when you use lookfor

Help text A more detailed description of the program,
displayed together with the H1 line when you
request help on a specific function

Working with Functions in Files

File Element Description

Function or script body Program code that performs the actual
computations and assigns values to any output
arguments

Comments Text in the body of the program that explains
the internal workings of the program

Function Definition Line

The function definition line informs MATLAB that the file contains a function,
and specifies the argument calling sequence of the function. This line contains
the function keyword and must always be the first line of the file, except
for lines that are nonexecutable comments. The function definition line for
the fact function is

function y = fact(x)

T— input argument

function name
output argument
keyword

All MATLAB functions have a function definition line that follows this
pattern.

Function Name. Function names must begin with a letter, can contain any
alphanumeric characters or underscores, and must be no longer than the
maximum allowed length (returned by the function namelengthmax). Because
variables must obey similar rules, you can use the isvarname function to
check whether a function name is valid:

isvarname myfun

3-11

3 Functions and Scripts

3-12

Function names also cannot be the same as any MATLAB keyword. Use the
iskeyword function with no inputs to display a list of all keywords.

Although function names can be of any length, MATLAB uses only the first
N characters of the name (where N is the number returned by the function
namelengthmax) and ignores the rest. Hence, it is important to make each
function name unique in the first N characters:

N = namelengthmax
N =
63

Note Some operating systems might restrict file names to shorter lengths.

The name of the text file that contains a MATLAB function consists of the
function name with the extension .m appended. For example,

average.m

If the file name and the function definition line name are different, MATLAB
ignores the internal (function) name. Thus, if average.m is the file that
defines a function named computeAverage, you would invoke the function

by typing

average

Note While the function name specified on the function definition line does
not have to be the same as the file name, it is best to use the same name
for both to avoid confusion.

Function Arguments. If the function has multiple output values, enclose
the output argument list in square brackets. Input arguments, if present, are
enclosed in parentheses following the function name. Use commas to separate
multiple input or output arguments. Here is the declaration for a function
named sphere that has three inputs and three outputs:

function [x, y, z] = sphere(theta, phi, rho)

Working with Functions in Files

If there is no output, leave the output blank

function printresults(x)

or use empty square brackets:

function [] = printresults(x)

The variables that you pass to the function do not need to have the same
name as the variables in the function definition line.

The H1 Line

The H1 line, so named because it is the first help text line, is a comment
line immediately following the function definition line. Because it consists
of comment text, the H1 line begins with a percent sign, %. For the average
function, the H1 line is

% AVERAGE Mean of vector elements.

This is the first line of text that appears when a user types help functionname
at the MATLAB prompt. Further, the lookfor function searches on and
displays only the H1 line. Because this line provides important summary
information about the file, it is important to make it as descriptive as possible.

Help Text

You can create online help for your program files by entering help text on one
or more consecutive comment lines at the start of your program. MATLAB
considers the first group of consecutive lines immediately following the H1
line that begin with % to be the online help text for the function. The first line
without % as the left-most character ends the help.

The help text for the average function is

% AVERAGE(X), where X is a vector, is the mean of vector
% elements. Nonvector input results in an error.

3-13

3 Functions and Scripts

3-14

When you type help functionname at the command prompt, MATLAB
displays the H1 line followed by the online help text for that function. The
help system ignores any comment lines that appear after this help block.

Note Help text in a program file can be viewed at the MATLAB command
prompt only (using help functionname). You cannot display this text using
the MATLAB Help browser. You can, however, use the Help browser to
get help on MATLAB functions and also to read the documentation on any
MathWorks™ products.

The Function or Script Body

The function body contains all the MATLAB code that performs computations
and assigns values to output arguments. The statements in the function
body can consist of function calls, programming constructs like flow control
and interactive input/output, calculations, assignments, comments, and
blank lines.

For example, the body of the average function contains a number of simple
programming statements:

[m,n] = size(x);
if (=((m==1) [| (n==1)) []

(m==1&& n ==1)) % Flow control

error('Input must be a vector') % Error message display
end
y = sum(x)/length(x); % Computation and assignment

Comments

As mentioned earlier, comment lines begin with a percent sign (%). Comment
lines can appear anywhere in a program file, and you can append comments
to the end of a line of code. For example,

% Add up all the vector elements.
y = sum(Xx) % Use the sum function.

Working with Functions in Files

In addition to comment lines, you can insert blank lines anywhere in the
file. Blank lines are ignored. However, a blank line can indicate the end of
the help text entry for a program file.

Block Comments. To write comments that require more than one line, use
the block comment operators, %{ and %}:

%{

This next block of code checks the number of inputs
passed in, makes sure that each input is a valid data
type, and then branches to start processing the data.

[)
%}

Note The %{ and %} operators must appear alone on the lines that
immediately precede and follow the block of help text. Do not include any
other text on these lines.

Creating a Program File
You create files for your programs using a text editor. MATLAB provides
a built-in editor, but you can use any text editor you like. Once you have

written and saved the file, you can run the program as you would any other
MATLAB function or command.

The process looks like this:

3-15

3 Functions and Scripts

3-16

1 Create an M-file using a text function ¢ = myfile(a,b)
editor. c = sqrtifa."2)+(b."2))
2z Call the M-file from the a=7.5
command line, or from within b = 3.342
another M-file, c = myfilefa,h)

%]
I

g.21089

Using Text Editors

Program files are ordinary text files that you create using a text editor. If you
use the MATLAB Editor/Debugger, open a new file by selecting New > File
from the File menu at the top of the MATLAB Command Window.

Another way to edit a program file is from the MATLAB command line using
the edit function. For example,

edit foo

opens the editor on the file foo.m. Omitting a file name opens the editor on
an untitled file.

You can create the fact function shown in “Basic Parts of a Program File” on
page 3-10 by opening your text editor, entering the lines shown, and saving
the text in a file called fact.m in your current folder.

Working with Functions in Files

Once you have created this file, here are some things you can:

e List the names of the files in your current folder:

what

e List the contents of file fact.m:

type fact

e (Call the fact function:

fact(5)
ans =
120

A Word of Caution on Saving Program Files

Save any files you create and any MathWorks supplied files that you edit
in folders outside of the folder tree in which the MATLAB software is
installed. If you keep your files in any of the installed folders, your files can
be overwritten when you install a new version of MATLAB.

MATLAB installs its software into folders under matlabroot/toolbox. To
see what matlabroot is on your system, type matlabroot at the MATLAB
command prompt.

Also note that locations of files in the matlabroot/toolbox folder tree are
loaded and cached in memory at the beginning of each MATLAB session to
improve performance. If you save files to matlabroot/toolbox folders using
an external editor, or if you add or remove files from these folders using file
system operations, enter the commands clear functionname and rehash
toolbox before you use the files in the current session.

For more information, see the rehash function reference page or the section

Toolbox Path Caching in the Desktop Tools and Development Environment
documentation.

3-17

3 Functions and Scripts

3-18

Providing Help for Your Program

You can provide user information for the programs you write by including a
help text section at the beginning of your program file. (See “Help Text” on
page 3-13).

You can also make help entries for an entire folder by creating a file with the
special name Contents.m that resides in the folder. This file must contain
only comment lines; that is, every line must begin with a percent sign.
MATLAB displays the lines in a Contents.m file whenever you type

help foldername

Contents.m files are optional. You might have folders of your own with files
that you do not necessarily want public. For this or other reasons, you might
choose not to provide this type of help listing for these folders. If you have

a folder that is on the path that does not have a Contents.m file, MATLAB
displays (No table of contents file) for that folder in response to the
help command. If you do not want to see this displayed, creating an empty
Contents.m file will disable this message for that folder.

Also, if a folder does not contain a Contents.m file, typing

help foldername
displays the first help line (the H1 line) for each program file in the folder.

There is a tool in the Current Folder browser, called the Contents Report, that
you can use to help create and validate your Contents.m files. See “Displaying
and Updating a Report on the Contents of a Folder” in the MATLAB Desktop
Tools and Development Environment documentation for more information.

Cleaning Up the File When Done

When you have programmed all that you set out to do in your file, there is
one last step to consider before it is complete. Make sure that you leave your
program environment in a clean state that does not interfere with any other
program code. For example, you might want to

® (Close any files that you opened for import or export.

¢ Delete large temporary variables that take up significant space in memory.

Working with Functions in Files

® Lock or unlock memory to prevent or allow erasing MATLAB function
or MEX-files.

® Ensure that variables are not left in an unexpected state.

® Set your working folder back to its default if you have changed it.

® Make sure global and persistent variables are in the correct state.

e Restore any variables you used temporarily back to their original values.
MATLAB provides the onCleanup function for this purpose. This function,
when used within any file program, establishes a cleanup routine for that
function. When the function terminates, whether normally or due to an error,

MATLAB automatically executes the cleanup routine. You can declare any
number of cleanup routines for a program file.

The following statement establishes a function handle to a cleanup routine,
and associates the handle with output variable cleanupObj. (This variable is
actually a MATLAB object.) If you clear cleanupObj, or when your function
finishes executing, the function passed in as @myCleanupRoutine executes.

When your program exits, MATLAB finds any instances of the onCleanup
class and executes the associated function handles:

cleanupObj = onCleanup(@myCleanupRoutine);
Example 1

MATLAB closes the file with identifier fid when function openFileSafely
terminates:

function openFileSafely(fileName)
fid = fopen(fileName, 'r');
¢ = onCleanup(@()fclose(fid));

s = fread(fid);

% fclose(fid) executes here.

3-19

3 Functions and Scripts

Example 2

This example preserves the current folder whether functionThatMayError
returns an error or not:

function changeFolderSafely(fileName)
currentFolder = pwd;
¢ = onCleanup(@()cd(currentFolder));

functionThatMayError;
end % C executes cd(currentFolder) here

3-20

Scripts and Functions

Scripts and Functions

In this section...

“Scripts” on page 3-21
“Functions” on page 3-22
“Types of Functions” on page 3-23

“Organizing Your Functions” on page 3-24

“Identifying Dependencies” on page 3-25

Scripts

Scripts are the simplest kind of program file because they have no input
or output arguments. They are useful for automating series of MATLAB
commands, such as computations that you have to perform repeatedly from
the command line.

The Base Workspace

Scripts share the base workspace with your interactive MATLAB session
and with other scripts. They operate on existing data in the workspace, or
they can create new data on which to operate. Any variables that scripts
create remain in the workspace after the script finishes so you can use
them for further computations. Be aware, though, that running a script can
unintentionally overwrite data stored in the base workspace by commands
entered at the MATLAB command prompt.

Simple Script Example

These statements calculate rho for several trigonometric functions of theta,
then create a series of polar plots:

% A script to produce % Comment lines

% "flower petal" plots

theta = -pi:0.01:pi; % Computations
rho(1, =2 * sin(5 * theta) .~ 2;

cos(10 * theta) .~ 3;

)
rho(2,:) =
rho(3,:) = sin(theta) ." 2;
rho(4,:) = 5 * cos(3.5 * theta) .~ 3;

3-21

../ref/script.html

3 Functions and Scripts

3-22

for k = 1:4
polar(theta, rho(k,:)) % Graphics output
pause

end

Try entering these commands in a file called petals.m. This file is now a
MATLAB script. Typing petals at the MATLAB command line executes
the statements in the script.

After the script displays a plot, press Enter or Return to move to the next
plot. There are no input or output arguments; petals creates the variables it
needs in the MATLAB workspace. When execution completes, the variables
(i, theta, and rho) remain in the workspace. To see a listing of them, enter
whos at the command prompt.

Functions

The main difference between a script and a function is that a function accepts
input from and returns output to its caller, whereas scripts do not. You define
MATLAB functions in a file that begins with a line containing the function
key word. You cannot define a function within a script file or at the MATLAB
command line.

Functions always begin with a function definition line and end either with the
first matching end statement, the occurrence of another function definition
line, or the end of the file, whichever comes first. Using end to mark the

end of a function definition is required only when the function being defined
contains one or more nested functions.

Functions operate on variables within their own workspace. This workspace
1s separate from the base workspace; the workspace that you access at the
MATLAB command prompt and in scripts.

The Function Workspace

Each function in a file has an area of memory, separate from the MATLAB
base workspace, in which it operates. This area, called the function
workspace, gives each function its own workspace context.

Scripts and Functions

While using MATLAB, the only variables you can access are those in the
calling context, be it the base workspace or that of another function. The
variables that you pass to a function must be in the calling context, and the
function returns its output arguments to the calling workspace context.
You can, however, define variables as global variables explicitly, allowing
more than one workspace context to access them. You can also evaluate any
MATLAB statement using variables from either the base workspace or the
workspace of the calling function using the evalin function. See “Extending
Variable Scope” on page 2-16 for more information.

Simple Function Example

The average function is a simple file that calculates the average of the
elements in a vector:

function y = average(Xx)

% AVERAGE Mean of vector elements.

% AVERAGE (X), where X is a vector, is the mean of vector

% elements. Nonvector input results in an error.

[m,n] = size(x);

if (=((m==1) | (n==1)) | (m==1&n==1))
error('Input must be a vector')

end

y = sum(x)/length(x); % Actual computation

Try entering these commands in a file called average.m. The average
function accepts a single input argument and returns a single output
argument. To call the average function, enter

z = 1:99;
average(z)

ans =
50

Types of Functions

MATLAB provides the following types of functions. Each function type is
described in more detail in a later section of this documentation:

3-23

3 Functions and Scripts

3-24

¢ The primary function is the first function in a program file and typically
contains the main program.

e Subfunctions act as subroutines to the main function. You can also use
them to define multiple functions within a single file.

® Nested functions are functions defined within another function. They can
help to improve the readability of your program and also give you more
flexible access to variables in the file.

® Anonymous functions provide a quick way of making a function from any
MATLAB expression. You can compose anonymous functions either from
within another function or at the MATLAB command prompt.

® QOverloaded functions are useful when you need to create a function that
responds to different types of inputs accordingly. They are similar to
overloaded functions in any object-oriented language.

® Private functions give you a way to restrict access to a function. You can
call them only from a function in the parent folder.

You might also see the term function functions in the documentation. This is
not really a separate function type. The term function functions refers to any
functions that accept another function as an input argument. You can pass a
function to another function using a function handle.

Organizing Your Functions

When writing and saving your functions, you have several options on how to
organize the functions within the file, and also where in your folder structure
you want to save them. Be sure to place your function files either in the folder
in which you plan to run MATLAB, or in some other folder that is on the
MATLAB path.

Use this table as a general guide when creating and saving your files:

If your program or routine. .. |then. ..

Requires only one function Make it a single (primary) function
in the file.
Also requires subroutines Make each subroutine a subfunction

within same file as the primary.

Scripts and Functions

If your program or routine . . . |then. . .

Is for use only in the context of a Nest it within the other function.

certain function Nested functions also offer wider
access to variables within the
function.

Is a constructor or method of a Put the file in a MATLAB class

MATLAB class folder.

Is to have limited access Put the file in a private subfolder.

Is part of a group of similar functions | Put the file in a package subfolder.

or classes

If necessary, you can work around some of the constraints regarding function
access by using function handles. You might find this useful when debugging
your functions.

Identifying Dependencies

If you need to know what other functions and scripts your program is
dependent upon, use one of the techniques described below.

Simple Display of Program File Dependencies

For a simple display of all program files referenced by a particular function,
follow these steps:

1 Type clear functions to clear all functions from memory (see Note below).

Note clear functions does not clear functions locked by mlock. If you
have locked functions (which you can check using inmem) unlock them with
munlock, and then repeat step 1.

2 Execute the function you want to check. Note that the function arguments
you choose to use in this step are important, because you can get different
results when calling the same function with different arguments.

3-25

3 Functions and Scripts

3-26

3 Type inmem to display all program files that were used when the function
ran. If you want to see what MEX-files were used as well, specify an
additional output:

[mfiles, mexfiles] = inmem

Detailed Display of Program File Dependencies

For a much more detailed display of dependent function information, use the
depfun function. In addition to program files, depfun shows which built-ins
and classes a particular function depends on:

[1list, builtins, classes] = depfun('strtok.m');

list

list =
'D:\matlabR14\toolbox\matlab\strfun\strtok.m'
'D:\matlabR14\toolbox\distcomp\toChar.m'
'D:\matlabR14\toolbox\matlab\datafun\prod.m'
'D:\matlabR14\toolbox\matlab\datatypes\@opaque\char.m'

Calling Functions

Calling Functions

In this section...

“Command vs. Function Syntax” on page 3-27

“What Happens When You Call a Function” on page 3-36
“Determining Which Function Gets Called” on page 3-36
“Calling External Functions” on page 3-40

“Running External Programs” on page 3-40

Command vs. Function Syntax

Overview

MATLAB syntax differs for issuing commands and for calling functions. This
1s sometimes referred to as command-function duality. In many cases, you
can use either of the two syntaxes in commands and in function calls.

You are issuing a command when you tell MATLAB to do something. You
might use a function name in the command and possibly a few switches or
modifiers, usually expressed in the form of character strings. But, in most
cases, there is no need to pass data such as numeric values or variables in
a command. There is also no expectation that the command returns any
output value.

A few examples of MATLAB commands are shown here. Note that MATLAB
passes only string arguments and does not return any output:

clear

format long

dbstop in find_maxval

addpath C:\srcfolder D:\matlab\testfolder2 -end
whos -file savefile.mat -regexp "p*

Unlike commands, most functions act upon data. You pass data into the
function when calling it, and often expect it to return data upon completion.
These input and output values can be in the form of any MATLAB class (e.g.,
arrays of integers, characters, cells, function handles, etc.).

3-27

3 Functions and Scripts

3-28

Examples of function calls are shown below. Note that MATLAB requires
parentheses around the input argument list, quotation marks around
characters and strings, and brackets around multiple output values:

y = eye(n)

C = complex(A, B);

m = memmapfile('records.dat', 'Offset', 1024,
'Format', 'uint32');

[x1 x2 x3 x4] = deal(A{:});

Regardless of which syntax you use, function names are always sensitive to
case. When you call a function, use the correct combination of upper and
lowercase letters so that the name is an exact match. Otherwise, you risk
calling a different function that does match, but is elsewhere on the path.

MATLAB Command Syntax

A command that makes a function call consists of the function name followed
by one or more arguments separated by spaces. In most cases, all input
arguments are considered to be strings. Because of this, enclosing string
arguments with quotation marks is optional.

The format for calling a function using command syntax is

functionname string? string2 string3

You can use command syntax in calling a function when both of the following
are true:

e All input arguments must be characters or strings. Variable names,
expressions that require evaluation, and non-character classes (e.g.,
doubles, structures, function handles) are not allowed.

® You do not need to capture output in a variable. Commands that display
information on your monitor screen are acceptable.

Calling Functions

Note There are a few functions, such as save and load, that might appear
to depart from this first rule. For an explanation of how these functions
operate when using this syntax, see “Using save and load with Command
Syntax” on page 3-30.

When you use command syntax, MATLAB interprets each input argument
as a character string literal. There is no need to enclose these string
arguments in quotation marks unless the argument includes one or more
space characters. This is true whether the argument is a string of plain text,
a file name, or a command switch:

strcat one two three four % Command with 4 arguments.

ans =
onetwothreefour

strcat 'one' 'two' 'three' 'four' % Command with 4 arguments.
ans =

onetwothreefour
strcat 'one two three four' % Command with 1 argument.

ans =
one two three four

Several examples of command syntax are given below.

Example 1. This command copies file square.m to folder
D:\matlab\functions. All arguments are strings:

copyfile square.m D:\matlab\functions

Example 2. The example on the left calls disp using command syntax.
MATLAB interprets A as a string literal and displays the character A.

The example on the right passes the value of A to disp, which then displays
3.1416:

3-29

3 Functions and Scripts

3-30

Command Syntax Function Syntax
A = pi; A = pi;
disp A disp(A)

A 3.1416

Using save and load with Command Syntax. There are a few functions,
such as save and load, that do accept variable names as input arguments.
Examples follow:

o°

save mydata.mat x y z
load mydata x z

clear N

whos A

X, Yy, and z are variables
x and z are variables

N is a variable

A is a variable

o° o°

o°

MATLAB Function Syntax

Function calls written in function syntax

® Enclose the input argument list in parentheses

® Separate the inputs with commas

* Enclose string arguments with single quotation marks

¢ Optionally assign any output from the function to one or more output

arguments

Unlike command syntax, there are no limitations on when you can use
function syntax in a function call.

Function calls written in function syntax enclose the input argument list in
parentheses, separate the inputs with commas, enclose string arguments with
single quotation marks, and optionally assign any output from the function
to one or more output arguments. Unlike command syntax, there are no
limitations on when you can use function syntax in a function call.

The format for MATLAB function syntax is

out = functionname(variable, 'string', expression, ...);

Calling Functions

Calls written in function syntax pass the values assigned to each variable in
the argument list. For example, this expression passes the values assigned to
A0, A1, and A2 to the polyeig function:

e = polyeig (A0, A1, A2)

If a function returns more than one value, separate the output variables with
commas or spaces, and enclose them all in square brackets ([1):

[out1, out2, ..., outN] = functionname(ini, in2, ..., inN);

For example,

[pathstr, name, ext] = fileparts(filename);

Several examples of function syntax appear below. For more examples, see
the section on “Common Mistakes In Syntax” on page 3-32

Example 1 — Simple Variable Comparison. Passing two variables
representing equal strings to the strcmp function using function and
command syntaxes gives different results. The function syntax passes the
values of the arguments. strcmp returns a 1, which means they are equal:

str1 = 'one'; str2 = 'one';
strcmp(str1, str2) % Function syntax
ans =

1 (equal)

The command syntax passes the names of the variables, 'str1' and 'str2',
which are unequal:

str1 = 'one’; str2 = 'one';
strcmp str1 str2 % Command syntax
ans =

0 (unequal)

3-31

3 Functions and Scripts

3-32

Example 2 — Passing Variable Names. The reshape function takes three
Iinput arguments: a variable name and two integers to specify dimensions for

the new shape. It also returns the reshaped array. For both of these reasons,

you need to use function syntax for this operation:

S1 = ...
"MATLAB: Accelerating the pace of engineering and science.';

S2 =
s2!

ans =
MATLAB: Acceleratin
g the pace of engin
eering and science.

reshape(S1, 19, 3);

Command syntax interprets all three input arguments as strings and provides
no means for capturing the output:

reshape S1 19 3;
??? Error using ==> reshape
Size arguments must be integer scalars.

Common Mistakes In Syntax

The two MATLAB syntax styles are generally easy to use. You should have no
difficulty in using them if you keep in mind the rules stated in the previous
sections. Just the same, there are certain potential errors to watch out for.

In all examples in this section, it is the group of statements on the left that
are incorrect, and the statements on the right that show the correct usage.

Example 1 — Numeric Values Evaluated As Strings. The statement on
the left, below, appears to report that 500 is not numeric. However, because
this statement uses command syntax, the input 1s actually the string ’500°
and not the number. Use function syntax, as shown on the right, to get the
correct answer:

isnumeric 500 isnumeric(500)
ans = ans =
0 1

Calling Functions

Example 2 — Equal Values that Appear As Unequal. In this example,
it might seem that MATLAB is reporting the values of variables A and B as
unequal. However, it is not the values of A and B that are being compared
here; it is the variable names 'A' and 'B':

A = 500; B = 500; A = 500; B = 500;
isequal A B isequal (A, B)
ans = ans =

0 1

Example 3 — Command Switches Used in Function Syntax. When
using a command switch or modifier with function syntax, remember to
enclose not only the input arguments in quotation marks, but the command
switch, as well. In this example, -file needs to have quotation marks around
it:

whos(-file, 'savefile.mat') whos('-file', 'tempfile.mat')
A simpler method is to use command syntax for this type of statement:

whos -file tempfile.mat

Example 4 — Translation of Keywords. In command syntax, MATLAB
interprets keywords in the same way it does variable names, as string literals.
The statement to the left instructs MATLAB to search for a folder with the
literal name 'matlabroot', when what was intended was the folder specified
by this keyword. Function syntax uses the value of the keyword instead:

cd matlabroot cd(matlabroot)

Example 5 — Variables That Hold File Names. This example, uses

the fopen function to open the file accounts.txt. When this is done using
command syntax, MATLAB looks for a file named filename, which does not
exist. When working with file names that are stored in variables, it is usually
best to use function syntax:

filename = 'accounts.txt'; filename = 'accounts.txt';
fopen filename; fopen(filename);

3-33

3 Functions and Scripts

3-34

Example 6 — Invalid String Comparisons. This example attempts to see
if the class of vector A is an 8-bit unsigned integer (uint8), but the comparison
1s really between the strings 'class(A)' and 'int8':

A = int8(1:8) A = int8(1:8)
strcmp class(A) int8 strcmp(class(A), 'int8')
ans = ans =

0 1

Example 7 — Numeric Arguments. This example shows that command
syntax does not accept numeric arguments. Because command syntax
assumes that each input argument is a character string, the numeric input
3.499 is interpreted by MATLAB as a five-element character array '3.499"',
numerically equivalent to the vector [51 46 52 57 57].

round 3.499 round(3.499)
ans = ans =
51 46 52 57 57 3

Example 8 — Save and Load. The save and load functions are often
easier to use with command syntax. The statement save M saves variable M,
not the character M, to the workspace:

M = magic(20); M = magic(20);

save (M) save M % or save('M")
clear M clear M

load (M) load M % or load('M")

Example 9 — Class as a Command. When using the class function to
display or return the class of a variable or value, always use the function
syntax:

class pi
ans =
char

class(pi)
ans =
double

Recognizing Function Calls That Use Command Syntax

It can be difficult to tell whether a MATLAB expression is a function call
using command syntax or another kind of expression, such as an operation on
one or more variables. Consider the following example:

Calling Functions

1s ./d

Is this a call to the 1s function with the folder . /d as its argument? Or is it a
request to perform elementwise division on the array that is the value of the
1s variable, using the value of the d variable as the divisor?

This example might appear unambiguous because MATLAB can determine
whether 1s and d are functions or variables, but that is not always true. Some
MATLAB components, such as the Code Analyzer and the Editor/Debugger,
must operate without reference to the MATLAB path or workspace. MATLAB
therefore uses syntactic rules to determine when an expression is a function
call using command syntax.

The rules are complicated and have exceptions. In general, when MATLAB
recognizes an identifier (which might name a function or a variable), it
analyzes the characters that follow the identifier to determine what kind of
expression exists. The expression is usually a function call using command
syntax when all of the following are true:

1 The identifier is followed immediately by white space.

2 The characters following the white space are not parentheses or an
assignment operator.

3 The characters following the white space are not an operator that is
itself followed by additional white space and then by characters that can
legitimately follow an operator.

The example above meets all three criteria and is therefore a function call
using command syntax:

1s ./d

The following examples are not function calls using command syntax:

% No white space following the 1ls identifier
% Interpretation: elementwise division
1s./d

% Parenthesis following white space
Interpretation: function call using function syntax

[
“©

3-35

3 Functions and Scripts

3-36

1s ('./d")

% Assignment operator following white space
% Interpretation: assignment to a variable
1s =d

o°

Operator following white space, followed in turn by
% more white space and a variable

% Interpretation: elementwise division

1s ./ d

What Happens When You Call a Function

When you call a function from either the command line or from within another
program file, MATLAB parses the function into pseudocode and stores it in
memory. This prevents MATLAB from having to reparse a function each time
you call it during a session. The pseudocode remains in memory until you
clear it using the clear function, or until you quit MATLAB.

Clearing Functions from Memory

You can use clear in any of the following ways to remove functions from the
MATLAB workspace.

Syntax Description

clear functionname Remove specified function from workspace.
clear functions Remove all compiled functions.

clear all Remove all variables and functions.

Determining Which Function Gets Called

When more than one function has the same name, which one does MATLAB
call? This section explains the process that MATLAB uses to make this
decision. It covers the following topics:

® “Function Scope” on page 3-37

® “Function Precedence Order” on page 3-37

e “Multiple Implementation Types” on page 3-39

Calling Functions

* “Querying Which Function Gets Called” on page 3-39

Keep in mind that there are certain situations in which function names
can conflict with variables of the same name. See “Potential Conflict with
Function Names” on page 2-13 for more information.

Function Scope

Any functions you call must first be within the scope of (i.e., visible to) the
calling function or your MATLAB session. MATLAB determines if a function
1s in scope by searching for the function’s executable file according to a certain
order (see Function Precedence Order, below).

One key part of this search order is the MATLAB path. The path is an ordered
list of folders that MATLAB defines on startup. You can add or remove any
folders you want from the path. MATLAB searches the path for the given
function name, starting at the first folder in the path string and continuing
until either the function file is found or the list of folders is exhausted. If no
function of that name is found, then the function is considered to be out of
scope and MATLAB issues an error.

Function Precedence Order

The function precedence order determines the precedence of one function
over another based on the type of function and its location on the MATLAB
path. MATLAB selects the correct function for a given context by applying the
following function precedence rules in the order given here.

For items 3 through 7 in this list, the file MATLAB searches for can be any of
four types: a built-in file or program file with a .m file extension, preparsed
program file (P-Code), compiled C or Fortran file (MEX-file), or Simulink®
model (MDL-file). See “Multiple Implementation Types” on page 3-39 for
more on this.

3-37

3 Functions and Scripts

3-38

“Variables” on page 2-8

Before assuming that a name should match a function, MATLAB checks
the current workspace to see if it matches a variable name. If MATLAB
finds a match, it stops the search.

“Nested Functions” on page 4-16

Nested Functions take precedence over all other functions that are on the
path and have the same name.

“Subfunctions” on page 4-33

Subfunctions take precedence over all other functions except for nested
functions that are on the path and have the same name.

“Private Functions” on page 4-35

Private functions are called if there is no subfunction of the same name
within the current scope.

Class Constructors

Constructor functions (functions having names that are the same as the
@ folder, for example @polynom/polynom.m) take precedence over other
MATLAB functions. Therefore, if you create a file called polynom.m and
put it on your path before the constructor @polynom/polynom.m version,
MATLAB will always call the constructor version.

Overloaded Methods

Overloaded methods have lower precedence than nested functions,
subfunctions, and private functions of the same name that are on the
path. This is true even if you call the function with an argument of type
matching that of the overloaded method. Which overloaded method gets
called depends on the classes of the objects passed in the argument list.

7 Functions in the current folder

A function in the current working folder is selected before one elsewhere
on the path.

Calling Functions

8 Functions elsewhere on the path

Finally, a function elsewhere on the path is selected. A function in a folder
that is toward the beginning of the path string is given higher precedence.

Note Because variables have the highest precedence, if you have created a
variable of the same name as a function, MATLAB will not be able to run that

function until you clear the variable from memory.

Multiple Implementation Types
There are five file precedence types. MATLAB uses file precedence to
select between identically named functions in the same folder. The order of

precedence for file types is

1 Built-in file

2 MEX-files

3 MDL (Simulink® model) file

4 P-code file

5 Program file with a .m file extension

For example, if MATLAB finds a P-code and a MATLAB program file version
of a method in a class folder, then the P-code version is used. It is, therefore,
important to regenerate the P-code version whenever you edit the program

file.

Querying Which Function Gets Called
You can determine which function MATLAB will call using the which
command. For example,

which pie3
matlabroot/toolbox/matlab/specgraph/pie3.m

However, if p is a portfolio object,

3-39

3 Functions and Scripts

3-40

which pie3(p)
folder_on_your_path/@portfolio/pie3.m % portfolio method

The which command determines which version of pie3 MATLAB calls if you
pass a portfolio object as the input argument. To see a list of all versions of a
particular function that are on your MATLAB path, use the -all option. See
the which reference page for more information on this command.

Calling External Functions

The MATLAB external interface offers a number of ways to run external
functions from MATLAB. This includes programs written in C or Fortran,
methods invoked on Sun Java or COM (Component Object Model) objects,
functions that interface with serial port hardware, and functions stored in
shared libraries. The MATLAB External Interfaces documentation describes
these various interfaces and how to call these external functions.

Running External Programs

For information on how to invoke operating systems commands or execute
programs that are external to MATLAB, see Running External Programs in
the MATLAB Desktop Tools and Development documentation.

Function Arguments

Function Arguments

In this section...

“Overview” on page 3-41
“Input Arguments” on page 3-41
“Output Arguments” on page 3-43

“Passing Arguments in Structures or Cell Arrays” on page 3-46

“Passing Optional Arguments” on page 3-48

Overview

When calling a function, the caller provides the function with any data it
needs by passing the data in an argument list. Data that needs to be returned
to the caller is passed back in a list of return values.

Semantically speaking, the MATLAB software always passes argument
data by value. (Internally, MATLAB optimizes away any unnecessary copy
operations.) If you pass data to a function that then modifies this data, you
will need to update your own copy of the data. You can do this by having the
function return the updated value as an output argument.

Input Arguments

The MATLAB software accepts input arguments in either of two different
formats. See “Command vs. Function Syntax” on page 3-27 for information
on how to use these formats.

Passing String Arguments

When using the function syntax to pass a string literal to a function, you must
enclose the string in single quotation marks, ('string'). For example, to
create a new folder called myAppTests, use

mkdir('myAppTests')

3-41

3 Functions and Scripts

3-42

However, if you are passing a variable to which a string has been assigned,
use the variable name alone, without quotation marks. This example passes
the variable folderName:

folderName = 'myAppTests';
mkdir (folderName)

Passing File Name Arguments

You can specify a file name argument using the MATLAB command or
function syntax. For example, either of the following are acceptable. (The
.mat file extension is optional for save and load):

load mydata.mat % Command syntax
load('mydata.mat') % Function syntax

If you assign the output to a variable, you must use the function syntax:

savedData = load('mydata.mat')

Specify ASCII files as shown here. In this case, the file extension is required:

load mydata.dat -ascii % Command syntax
load('mydata.dat','-ascii') % Function syntax

Determining File Names at Run-Time. There are several ways that your
function code can work on specific files without your having to hardcode their
file names into the program. You can

¢ Pass the file name as an argument:
function myfun(datafile)
® Prompt for the file name using the input function:
filename = input('Enter name of file: ', 's');
® Browse for the file using the uigetfile function:

[filename, pathname] = uigetfile('*.mat', 'Select MAT-file');

Function Arguments

Passing Function Handle Arguments

The MATLAB function handle has several uses, the most common being

a means of immediate access to the function it represents. You can pass
function handles in argument lists to other functions, enabling the receiving
function to make calls by means of the handle.

To pass a function handle, include its variable name in the argument list of
the call:

fhandle = @humps;
x = fminbnd(fhandle, 0.3, 1);

The receiving function invokes the function being passed using the usual
MATLAB calling syntax:

function [xf, fval, exitflag, output] =
fminbnd(fhandle, ax, bx, options, varargin)

113 fx = fhandle(x, varargin{:});

Output Arguments

To receive data output from a function, you must use the function calling
syntax. This is not supported when you use command calling syntax

Assigning Output Arguments

Use the syntax shown here to store any values that are returned by the
function you are calling. To store one output, put the variable that is to hold
that output to the left of the equal sign:

vout = myfun(vini, vin2, ...);

To store more than one output, list the output variables inside square
brackets and separate them with commas or spaces:

[voutl vout2 ...] = myfun(vini, vin2, ...);

The number of output variables in your function call statement does not have
to match the number of return values declared in the function being called.

3-43

3 Functions and Scripts

3-44

For a function that declares N return values, you can specify anywhere from
zero to N output variables in the call statement. Any return values that you
do not have an output variable for are discarded.

Functions return output values in the order in which the corresponding
output variables appear in the function definition line within the file. This
function returns 100 first, then x * vy, and lastly x."2:

function [a b c] = myfun(x, y)
b =x*y; a = 100; C = X."2;

If called with only one output variable in the call statement, the function
returns only 100 and discards the values of b and c. If called with no outputs,
the functions returns 100 in the MATLAB default variable ans.

Assigning Optional Return Values

The section “Passing Variable Numbers of Arguments” on page 3-49 describes
the method of returning optional outputs in a cell array called varargout.

A function that uses varargout to return optional values has a function
definition line that looks like one of the following:

function varargout = myfun(vini, vin2, ...)
function [voutl vout2 ... varargout] = myfun(vini, vin2, ...)

The code within the function builds the varargout cell array. The content and
order of elements in the cell array determines how MATLAB assigns optional
return values to output variables in the function call.

In the case where varargout is the only variable shown to the left of the
equal sign in the function definition line, MATLAB assigns varargout{1} to
the first output variable, varargout{2} to the second, and so on. If there are
other outputs declared in the function definition line, then MATLAB assigns
those outputs to the leftmost output variables in the call statement, and then
assigns outputs taken from the varargout array to the remaining output
variables in the order just described.

This function builds the varargout array using descending rows of a 5-by-5
matrix. The function is capable of returning up to six outputs:

function varargout = byRow(a)

Function Arguments

varargout{1} = ' With VARARGOUT constructed by row ...';
for k = 1:5
row =5 - (k-1); % Reverse row order
varargout{k+1} = a(row,:);
end

Call the function, assigning outputs to four variables. MATLAB returns
varargout{1:4}, with rows of the matrix in varargout{2:4} and in the order
in which they were stored by the function:

[text r1 r2 r3] = byRow(magic(5))
text =
With VARARGOUT constructed by row ...

ri =

11 18 25 2 9
r2 =

10 12 19 21 3
r3 =

4 6 13 20 22

A similar function builds the varargout array using diagonals of a 5-by-5
matrix:

function varargout = byDiag(a)
varargout{1} = ' With VARARGOUT constructed by diagonal ...';
for k = -4:4
varargout{k + 6} = diag(a, k);
end

Call the function with five output variables. Again, MATLAB assigns
elements of varargout according to the manner in which it was constructed
within the function:

[text d1 d2 d3 d4] = byDiag(magic(5))
text =
With VARARGOUT constructed by diagonal

d1 =
11

d2 =
10
18

3-45

3 Functions and Scripts

3-46

Returning Modified Input Arguments

If you pass any input variables that the function can modify, you will need to
include the same variables as output arguments so that the caller receives
the updated value.

For example, if the function readText, shown below, reads one line of a file
each time is it called, then it must keep track of the offset into the file. But
when readText terminates, its copy of the offset variable is cleared from
memory. To keep the offset value from being lost, readText must return
this value to the caller:

function [text, offset] = readText(filestart, offset)

Passing Arguments in Structures or Cell Arrays

Instead of requiring an additional argument for every value you want to pass
in a function call, you can package them in a MATLAB structure or cell array.

Passing Arguments in a Structure

Make each input you want to pass a separate field in the structure argument,
using descriptive names for the fields. Structures allow you to change the
number, contents, or order of the arguments without having to modify the
function. They can also be useful when you have a number of functions that
need similar information.

This example updates weather statistics from information in the following
chart.

Function Arguments

City Temp. | Heat Index | Wind Speed | Wind Chill
Boston 43 32 8 37

Chicago 34 27 3 30

Lincoln 25 17 11 16

Denver 15 -5 9 0

Las Vegas 31 22 4 35

San Francisco 52 47 18 42

The information is stored in structure W. The structure has one field for each
column of data:

W = struct('city', {'Bos','Chi','Lin','Dnv','Vgs', 'SFr'},
‘temp', {43, 34, 25, 15, 31, 52},
‘heatix', {32, 27, 17, -5, 22, 47},
‘wspeed', {8, 3, 11, 9, 4, 18},
‘wchill', {37, 30, 16, 0, 35, 42});

To update the data base, you can pass the entire structure, or just one
field with its associated data. In the call shown here, W.wchill is a
comma-separated list:

updateStats(W.wchill);

Passing Arguments in a Cell Array

You can also group arguments into cell arrays. The advantage over structures
is that cell arrays are referenced by index, allowing you to loop through a
cell array and access each argument passed in or out of the function. The
disadvantage is that you do not have field names to describe each variable.

This example passes several attribute-value arguments to the plot function:

X = -pi:pi/10:pi;

Y = tan(sin(X)) - sin(tan(X));
C{1,1} = 'LineWidth'; C{2,1} = 2;
C{1,2} = 'MarkerEdgeColor'; c{2,2} = 'k';

3-47

3 Functions and Scripts

3-48

C{1,3} = 'MarkerFaceColor'; c{2,3} = 'g';

plot(X, Y, '--rs', C{:})

Passing Optional Arguments

When calling a function, there are often some arguments that you must
always specify, and others that are optional. For example, the sort function
accepts one to three inputs and returns zero to two outputs:

Create a 7-by-7 numeric matrix, A, and sort it along the first dimension in
ascending order:

A = magic(7);
sort(A, 1, 'ascend');

The first input in this call is the matrix to be sorted and is always required.
The second and third inputs (dimension and mode, respectively) are optional.
If you do not specify a value for either of the optional inputs, MATLAB uses its
default value instead. For sort, the default second and third inputs select an
ascending sort along the first dimension. If that is the type of sort you intend
to do, then you can replace the second command above with the following:

sort(A);

In the same manner, some output arguments can be optional, as well. In
this case, the values for any outputs not specified in the call are simply not
returned. The first command shown below returns the sorted matrix in B and
the indices used to sort the matrix in ind. The second command returns only
the sorted matrix. And the third command returns no values, displaying
output to the terminal screen instead:

[B, ind] = sort(A); % Return sorted matrix and indices.
B = sort(A); % Return sorted matrix.
sort(A); % Display output.

The optional outputs shown in the last example

You can also ignore outputs when calling a function or ignore certain inputs
when writing a function. The command below requests only the matrix of
indices (variable ind) from the sort function. The tilde (~) operator tells

Function Arguments

MATLAB that the output that holds this position in the argument list is not
needed by the caller:

[~, ind] = sort(A)

Passing Variable Numbers of Arguments

The varargin and varargout functions let you pass any number of inputs
or return any number of outputs to a function. This section describes how to
use these functions and also covers

¢ “Unpacking varargin Contents” on page 3-50

e “Packing varargout Contents” on page 3-50

e “varargin and varargout in Argument Lists” on page 3-51

MATLAB packs all specified input arguments into a cell array, a special
kind of MATLAB array in which the array elements are cells. Each cell can
hold any size or kind of data — one might hold a vector of numeric data,
another in the same array might hold an array of string data, and so on. For

output arguments, your function code must pack them into a cell array so that
MATLAB can return the arguments to the caller.

Here is an example function that accepts any number of two-element vectors
and draws a line to connect them:

function testvar(varargin)

for k = 1:1length(varargin)
x(k) = varargin{k}(1); % Cell array indexing
y(k) = varargin{k}(2);

end

xmin = min(0,min(x));

ymin = min(0,min(y));

axis([xmin fix(max(x))+3 ymin fix(max(y))+3])
plot(x,y)

Coded this way, the testvar function works with various input lists; for
example,

testvar([2 3],[1 5],[4 8],[6 5],[4 2],[2 3])

3-49

3 Functions and Scripts

3-50

testvar([-1 0],[3 -51,[4 2],[1 11])

Unpacking varargin Contents. Because varargin contains all the input
arguments in a cell array, it is necessary to use cell array indexing to extract
the data. For example,

y(n) = varargin{n}(2);
Cell array indexing has two subscript components:

® The indices within curly braces {} specify which cell to get the contents of.

® The indices within parentheses () specify a particular element of that cell.

In the preceding code, the indexing expression {i} accesses the nth cell of
varargin. The expression (2) represents the second element of the cell
contents.

Packing varargout Contents. When allowing a variable number of output
arguments, you must pack all of the output into the varargout cell array.
Use nargout to determine how many output arguments the function is called
with. For example, this code accepts a two-column input array, where the
first column represents a set of x coordinates and the second represents y
coordinates. It breaks the array into separate [xi yi] vectors that you can
pass into the testvar function shown at the beginning of the section on
“Passing Variable Numbers of Arguments” on page 3-49:

function [varargout] = testvar2(arrayin)
for k = 1:nargout

varargout{k} = arrayin(k,:); % Cell array assignment
end

The assignment statement inside the for loop uses cell array assignment
syntax. The left side of the statement, the cell array, is indexed using curly
braces to indicate that the data goes inside a cell. For complete information on
cell array assignment, see the documentation on“Cell Arrays” on page 1-101.

To call testvar2, type

a=1[12; 34; 56; 7 8; 9 0];

Function Arguments

[p1, p2, p3, p4, p5] = testvar2(a)

p1 =

1 2
p2 =

3 4
p3 =

5 6
p4 =

7 8
p5 =

9 0

varargin and varargout in Argument Lists. varargin or varargout
must appear last in the argument list, following any required input or output
variables. That is, the function call must specify the required arguments first.
For example, these function declaration lines show the correct placement

of varargin and varargout:

function [out1,out2] = examplei(a,b,varargin)
function [i,j,varargout] = example2(x1,y1,x2,y2,flag)

Checking the Number of Input Arguments

The nargin and nargout functions enable you to determine how many input
and output arguments a function is called with. You can then use conditional
statements to perform different tasks depending on the number of arguments.
For example,

function ¢ = testargi(a, b)
if (nargin == 1)
c=a."” 2;
elseif (nargin == 2)
c =a+ b;
end

Given a single input argument, this function squares the input value. Given
two inputs, it adds them together.

Here is a more advanced example that finds the first token in a character
string. A token is a set of characters delimited by white space or some other

3-51

3 Functions and Scripts

character. Given one input, the function assumes a default delimiter of white
space; given two, it lets you specify another delimiter if desired. It also allows
for two possible output argument lists:

function [token, remainder] = strtok(string, delimiters)
% Function requires at least one input argument
if nargin < 1
error('Not enough input arguments.');
end
token = []; remainder = [];
len = length(string);
if len ==
return
end

% If one input, use white space delimiter
if (nargin == 1)
delimiters = [9:13 32]; % White space characters
end
i=1;

% Determine where nondelimiter characters begin

while (any(string(i) == delimiters))
i=1+1;
if (i > len), return, end

end

[)

% Find where token ends

start = 1i;

while (~any(string(i) == delimiters))
i=1i+1;
if (i > len), break, end

end

finish = 1 - 1;
token = string(start:finish);

% For two output arguments, count characters after
% first delimiter (remainder)
if (nargout == 2)

remainder = string(finish+1:end);

3-52

Function Arguments

end

The strtok function is a MATLAB file in the strfun folder.

Note The order in which output arguments appear in the function declaration
line is important. The argument that the function returns in most cases
appears first in the list. Additional, optional arguments are appended to

the list.

Passing Optional Arguments to Nested Functions

You can use optional input and output arguments with nested functions,
but you should be aware of how MATLAB interprets varargin, varargout,
nargin, and nargout under those circumstances.

varargin and varargout are variables and, as such, they follow exactly the
same scoping rules as any other MATLAB variable. Because nested functions
share the workspaces of all outer functions, varargin and varargout used in
a nested function can refer to optional arguments passed to or from the nested
function, or passed to or from one of its outer functions.

nargin and nargout, on the other hand, are functions and when called within
a nested function, always return the number of arguments passed to or from
the nested function itself.

Using varargin and varargout. varargin or varargout used in a nested
function can refer to optional arguments passed to or from that function, or to
optional arguments passed to or from an outer function.

¢ If a nested function includes varargin or varargout in its function
declaration line, then the use of varargin or varargout within that
function returns optional arguments passed to or from that function.

e If varargin or varargout are not in the nested function declaration but
are in the declaration of an outer function, then the use of varargin or
varargout within the nested function returns optional arguments passed
to the outer function.

3-53

3 Functions and Scripts

3-54

In the example below, function C is nested within function B, and function B is
nested within function A. The term varargin{1} in function B refers to the
second input passed to the primary function A, while varargin{1} in function
C refers to the first argument, z, passed from function B:

function x = A(y, varargin) % Primary function A
B(nargin, y * rand(4))

function B(argsIn, z) % Nested function B
if argsln >= 2

C(z, varargin{1}, 4.512, 1.729)
end

function C(varargin) % Nested function C
if nargin >= 2
X = varargin{1}
end
end % End nested function C
end % End nested function B
end % End primary function A

Using nargin and nargout. When nargin or nargout appears in a nested
function, it refers to the number of inputs or outputs passed to that particular
function, regardless of whether or not it is nested.

In the example shown above, nargin in function A is the number of inputs
passed to A, and nargin in function C is the number of inputs passed to C. If a
nested function needs the value of nargin or nargout from an outer function,
you can pass this value in as a separate argument, as done in function B.

Example of Passing Optional Arguments to Nested Functions. This

example references the primary function’s varargin cell array from each of
two nested functions. (Because the workspace of an outer function is shared
with all functions nested within it, there is no need to pass varargin to the
nested functions.)

Both nested functions make use of the nargin value that applies to the
primary function. Calling nargin from the nested function would return the
number of inputs passed to that nested function, and not those that had been

Function Arguments

passed to the primary. For this reason, the primary function must pass its
nargin value to the nested functions.

function meters = convert2meters(miles, varargin)
% Converts MILES (plus optional FEET and INCHES input)
% values to METERS.

if nargin < 1 || nargin > 3
error('1 to 3 input arguments are required');
end

function feet = convert2Feet(argsln)
% Nested function that converts miles to feet and adds in
% optional FEET argument.

feet = miles .* 5280;

if argsIn >= 2
feet = feet + varargin{1};
end
end % End nested function convert2Feet

function inches = convert2Inches(argsIn)
% Nested function that converts feet to inches and adds in
% optional INCHES argument.

inches = feet .* 12;

if argsIn ==
inches = inches + varargin{2};
end
end % End nested function convert2Inches

feet convert2Feet(nargin);
inches = convert2Inches(nargin);

meters = inches .* 2.54 ./ 100;
end % End primary function convert2meters

convert2meters(5)

3-55

3 Functions and Scripts

3-56

ans =
8.0467e+003

convert2meters(5, 2000, 4.7)
ans =
8.6564e+003

Ignoring Selected Outputs or Input Arguments

Using the tilde (~) operator, you can change the declaration of a function so
that it ignores any one or more entries in the input argument list, or you can
change the function calling code so that one or more selected values returned
by the function are ignored. This can help you to keep your workspace clear of
variables you have no use for, and also help you conserve memory.

You can ignore unneeded outputs when calling a function:

[vOut1, ~, ~, vOut4] = myTestFun;

You can ignore arguments in an input argument list when defining certain
functions:

function myTestFun(argIni, ~, arglIn3);

Note Each tilde operator in an input or output argument list must be
separated from other arguments by a comma.

Ignoring Selected Outputs on a Function Call. When you replace an
output argument with the tilde operator, MATLAB does not return the value
that corresponds to that place in the argument list.

The task performed by the following example is to see if the current working
folder contains any files with a .m file extension. The dos function returns
up to two outputs: the completion status (where 0 equals success), and

the results of the operation. In this example, you only need the status
output. Returning the second output adds an unused variable m_files to the
workspace, and wastes nearly 50KB of memory:

Function Arguments

clear

[status, m_files] = dos('dir *.m');

whos
Name Size Bytes Class Attributes
m_files 1x24646 49292 char
status 1x1 8 double

Replacing the unused variable with the tilde operator resolves these problems:

clear
[status, ~] = dos('dir *.m');

status
status =
0 % Zero status means success: files were found
whos
Name Size Bytes Class Attributes
status 1x1 8 double

The next example displays the names of all files in the current folder that
have an x1s extension. In the first call to fileparts, only the file extension
1s needed. In the second call, only the file name is needed. All other outputs
are ~, and are thus ignored:

s = dir; len = length(s);
for k=1:len
[-, -, fileExt] = fileparts(s(k).name);
if strcmp(fileExt,'.x1s')
[-, x1sFile] = fileparts(s(k).name)
end
end

x1lsFile =
my_accounts

x1lsFile =
team_schedule

x1lsFile =
project_goals

3-57

3 Functions and Scripts

3-58

Ignoring Inputs in a Function Definition. Callback functions and methods
that implement a subclass are two examples of how you might find the tilde
operator useful when fewer than the full number of inputs are required.
When writing a callback function, you might have arguments required by
the callback template that your own callback code has no use for. Just the
same, you need to include these inputs in the argument list for your callback
definition. Otherwise, MATLAB might not be able to execute the callback.

The following example callback uses only the first of the three inputs defined
in the template. Invoking the callback as it is shown here puts two unused
inputs into the function workspace:

function plot_popup_CreateFcn(hObject, eventdata, handles)
if ispc && isequal(
get(hObject, 'BackgroundColor'),
get (0, 'defaultUicontrolBackground'))
set(hObject, 'BackgroundColor', 'white');
end

Rewrite the top line of the callback function so that it replaces the two unused
inputs with tilde. MATLAB now ignores any inputs passed in the call. This
results in less clutter in the function workspace:

function plot_popup_CreateFcn(hObject, ~, ~)
if ispc && isequal(

get(hObject, 'BackgroundColor'),

get (0, 'defaultUicontrolBackground'))
set(hObject, 'BackgroundColor', 'white');
end

When writing the original callback in the MATLAB Editor, the Code Analyzer
utility highlights the second and third input arguments. If you hover your
mouse pointer over one of these arguments, the Code Analyzer displays the
following warning:

Function Arguments

File Edit Text Go Cel Tools Debug Desktop Window Help u A K
NESd| $mR90 (o3 -Aaear|k-88 >0 &
= v = S IR A O PP PR P i §

function plot_popup CreateFcn (hCbject, eventdata, handles) |U

- if ispc && ised & Inputargument ‘eventdata’ might be unused. If this is OK, consider repladng it by ~.
Press Alt+Enter to fix,

get (hl
get (0, "defaultUicontrolBackground'))

- set (hObject, "BackgroundColor', "white');
- end

[R RS N

Click the button for each of the highlighted arguments, and MATLAB
replaces each with the tilde operator:

_File Edit Text Go Cel Tools Debug Desktop Window Help N A X
NDcd B0 (o -AManf k88 »0 ¥
BB -0 |+ |+ [x|& (0

function plot_popup CreateFcn(hCbject, ~, ~)

=

- if ispc && isequal

get (hCbject, 'BackgroundColor'),

get (0, "defaultUicontrolBackground'))
- szet (hObject, "BackgroundColor', 'white');
- end

L S

Another use for tilde as an input argument is in the use of classes that are
derived from a superclass. In many cases, inputs required by the superclass
might not be needed when invoked on a method of a particular subclass.
When writing the subclass method, replace inputs that are unused with
tilde. By doing this, you conserve memory by not allowing unnecessary input
values to be passed into the subclass method. You also reduce the number of
variables in the workspace of your subclass methods.

3-59

3 Functions and Scripts

Validating Inputs with Input Parser

In this section...

“What Is the Input Parser?” on page 3-60

“Working with the Example Function” on page 3-61

“The inputParser Class” on page 3-62

“Validating Data Passed to a Function” on page 3-63

“Substituting Default Values for Arguments Not Passed” on page 3-70
“Handling Unmatched Inputs” on page 3-71

“Interpreting Arguments Passed as Structures” on page 3-72

“Other Features of the Input Parser” on page 3-75

“Summary of inputParser Methods and Properties” on page 3-78

What Is the Input Parser?

When one function calls another, passing data via an argument list to the
function being called, it is the responsibility of the receiving function to verify
that the incoming data meets expectations. Using the MATLAB Input Parser
utility for this task ensures a consistent and thorough means of managing
and validating the input information.

On calls to your function, the Input Parser:

e Validates the data passed in, throwing an exception if the validation fails.
® Assigns a default value to any inputs not passed.

e EKither accepts or generates an error on any unrecognized parameter/value
inputs.

® Interprets any scalar structure argument as either a single value or a
series of parameter/value arguments.

e Returns information on the data passed in, arguments that defaulted, and
arguments that were unrecognized, but not erroneous.

3-60

Validating Inputs with Input Parser

Advantages of Using the Input Parser

¢ Input Parser offers an established procedure to verify data input, and thus
ensures consistency and thoroughness not only in your own functions, but
across your design group as well.

¢ Using the Input Parser offers a simple interface to the user. The parsing
implementation code is invisible to the user, and you can accomplish
verification tasks with a minimum of easy-to-use method calls.

® You can either write your own validation routines (as full or anonymous
functions) or use shared routines simply by specifying a function handle
to activate them.

¢ The Input Parser imposes certain restrictions that apply to the passing of
arguments from one function to another. These restrictions bring order to
your application code which, in turn, improves its maintainability.

Working with the Example Function

The examples in this section use a function called photoPrint to illustrate
use of the Input Parser utility. The purpose of the photoPrint function is to
send a specified graphics file to a printer. Any function that calls photoPrint
can pass from two to six arguments, or possibly more if they are in parameter
name/value format.

As you read the documentation, look for shaded sections of program code
labeled “Example Function, Part n.” This code steps you through the process
of creating the example function. As you encounter the shaded code segments,
copy and paste them into a file called photoPrint.m. Then, follow the
instructions for calling the function under the various conditions presented.

Beginning the Example Function

Using the MATLAB Editor, create a file named photoPrint.m and cut and
paste the code shown here into it. The function requires that at least two
input arguments be passed: filename and format. The varargin input
allows for additional inputs.

3-61

3 Functions and Scripts

3-62

Example Function, Part 1 — Create the Test File

Type edit photoPrint.m at the MATLAB command line. When the empty
file appears, add the following two lines at the top:

function photoPrint(filename, format, varargin)
% Function for demonstrating the use of the Input Parser.

Calling the Example Function. The following statement shows the calling
syntax for this function, including optional inputs:

photoPrint(filename, format, finish, ccode, 'horizDim', dimX,
‘vertDim', dimY)

The photoPrint function accepts two required and up to four optional inputs.
The last two inputs are in parameter name/value format and thus require two
entries apiece in the argument list:

e The filename and format inputs are required

® The finish and ccode inputs are optional. Your function identifies these
inputs by their position in the argument list.

® The dimX and dimY inputs are optional and are in parameter name/value
format. Your function identifies these inputs by the parameter names that
precede them in the argument list: ’horizDim’ and 'vertDim’, respectively.

The inputParser Class

The Input Parser relies on the methods and properties of the MATLAB
inputParser class. These properties and methods provide an easy-to-use
interface to all of the functionality necessary to protect your function against
errors introduced by invalid data received from another function. See
“Summary of inputParser Methods and Properties” on page 3-78 for a listing
of all methods and properties belonging to the inputParser class.

Calling the constructor function for inputParser creates an object of the
class. This object supports the creation of an input scheme representing the
characteristics of each potential input argument. Construct an object p of the
inputParser class in your example function.

Validating Inputs with Input Parser

Example Function, Part 2 — Create the Input Scheme Object

Add the following lines to photoPrint.m after the function definition and
comment lines:

% Create an instance of the inputParser class.
p = inputParser;

Note The constructor function and all methods and property names of the
inputParser class are case sensitive.

Validating Data Passed to a Function

There are three steps involved in preparing your function to run validation
checks on the argument values passed to your function during its execution.
You implement steps 2 and 3 in your function code:

Step 1 — Collect information on inputs.

Step 2 — Register expected input values with the Input Parser.

Step 3 — Parse and validate the results.

When you have completed the tasks above, your functions will perform the
argument checking you have enabled on every call received from another

function. The documentation that follows explains each step in detail and also
implements each operation in the example function.

Step 1 — Collect Information on the Inputs to Your Function

In the planning stage of your project, collect information on all input data
other functions pass in. The following table lists this information for the
example function, photoPrint.

Input Information for Example Function. The following table shows the
input scheme for the example function.

3-63

3 Functions and Scripts

3-64

Variable Name | Type of Input Acceptable Values Default Value
filename Required Character string N/A

format Required 'jpeg', 'tiff', 'png', 'gif"’ N/A

finish Optional 'flat', 'glossy’', 'satin’ 'glossy'
colorCode Optional 'RGB' or 'CMYK' 'CMYK'
horizDim Parameter/Value Positive scalar value <= than 20 | 6

vertDim Parameter/Value Positive scalar value <= than 20

Writing a Validation Routine. With the Input Parser, you have the option
of validating any or all of the input values passed to your function on a call.
You do this by writing a validation routine for the input as part of the Input
Parser code in your function. The validation routine is a function that takes
one input (the value it is checking) and produces a single Boolean output. If
the Boolean output is true, then MATLAB accepts the input value.

The validation routine can be a simple function handle passed directly to one
of the Input Parser methods. Or it can be a more lengthy, function you have
tailored for a more customized check. An example of a simple, yet useful,
validation routine is one that verifies that a character string was passed:

@ischar

Another such routine is one that verifies that the value of an input lies
between 0 and 100. inclusive:

@(x)isnumeric(x) && isscalar(x) && x>0 && x<=100);

Other helpful functions commonly used in argument validation are
validateattributes, validatestring, and the various forms of the is* and
isa functions. The documentation on “Validating the Inputs” on page 3-68
explains how the Input Parser uses the validation routine when it parses
input values passed to your function.

Step 2 — Register Expected Input Values with the Input Parser

Using the information collected in step 1, register with the Input Parser the
characteristics of each input value that you intend to verify whenever your

Validating Inputs with Input Parser

function is called. This requires calling one of three inputParser methods for
each input.

Defining Required Inputs. Add any required arguments to the input scheme
using the addRequired method of the class. This method takes two inputs:
the name of the required parameter, and an optional handle to a function that
validates the argument. Here is the syntax for the addRequired method:

p.addRequired(name, validator);

Add the following two addRequired statements to the end of your photoPrint
code. The two arguments for addRequired in this case are:

e A filename (without its file name extension) to represent the photo file
input
® A photo format keyword such as jpeg, tiff, png, or gif to identify the

format of this particular file.

The validation routines check that the first input is a character string, and
the second is one of four photo formats assigned to the variable formats.

Example Function, Part 3 — Define Required Arguments

Add the following lines to the end of photoPrint.m:

% Define inputs that one must pass on every call:
validFormats = {'jpeg', 'tiff', 'png', 'gif'};

p.addRequired('filename', @ischar);
p.addRequired('format', @(x)any(strcmp(x,validFormats)));

Note The order in which you invoke the addRequired method on different
inputs determines the order in which you pass required arguments in the
argument list.

3-65

3 Functions and Scripts

3-66

Defining Optional Inputs. Use the addOptional method to add any
optional inputs with the exception of parameter/value arguments. The syntax
for addOptional is similar to that of addRequired, except that you also need
to specify a default value to use whenever the optional argument is not passed:

addOptional(name, default, validator);

Add the following code segment to your photoPrint file. Specify a variable
name, default value, and validation routine for each.

Example Function, Part 4 — Define Optional Arguments

Add the following lines to the end of photoPrint.m:

% Define inputs that default when not passed:
validFinishes = {'flat', 'glossy', 'satin'};
validCCodes = {'CMYK', 'RGB'};

p.addOptional('finish', 'glossy',
@(x)any(strcmpi(x,validFinishes)));

p.addOptional('colorCode', 'CMYK',
@(x)any(strcmpi(x,validCCodes)));

Note The order in which you invoke the addOptional method on different
inputs determines the order in which you pass optional arguments in the
argument list.

Defining Parameter/Value Inputs. Use addParamValue to specify those
optional arguments that use a parameter/value format. The syntax is

addParamValue (name, default, validator);

Add the following code to your photoPrint file. You can insert the
addParamValue commands in any order because the Input Parser recognizes
them by name and not by position in the argument list. These statements
define the vertical and horizontal dimensions of the photo.

Validating Inputs with Input Parser

Example Function, Part 5 — Define Parameter/Value Arguments
Add the following lines to the end of photoPrint.m:
% Define inputs passed in parameter/value format.

validateRange = @(x)validateattributes(x, {'numeric'},
{'scalar', 'integer', 'positive', '<=', 20});

p.addParamValue('horizDim', 6, validateRange);
p.addParamValue('vertDim', 4, validateRange);

Listing Parameters. The variable names representing the arguments in the
input argument list are referred to as parameters of the function. To display a
list of all parameters for your function, whether passed in the function call or
not, examine the Parameters property of the input scheme object.

Example Function, Part 6 — Display Argument Names

Add the following lines to the end of photoPrint.m:

o

% Display the names of all arguments.
disp 'The input parameters for this program are'
disp(p.Parameters)

(After displaying the input parameters, comment out or remove the two
disp statements shown above before going on to Part 7 of the example.)

Save the file, and then run it as shown here:
photoPrint('myPhoto', 'jpeg', 'satin')

The output is

The input parameters for this program are
‘colorCode' 'filename' 'finish' 'format' 'horizDim' 'vertDim'

3-67

3 Functions and Scripts

3-68

Step 3 — Parse and Validate the Input Arguments

When you have an input scheme that represents all possible inputs to the
function, the next step is to initiate parsing of the inputs and evaluating the
results. The parse method of the inputParser class reads and validates all
arguments passed by the calling function. The syntax for parse is

p.parse(arglist);
where arglist represents the arguments passed to the function.

Validating the Inputs. When your function receives data passed from
another function, the Input Parser checks any arguments for which you
specified a validation function. If this validator returns false or generates an
error, MATLAB aborts the function and displays an error message.

Look back toward the start of the photoPrint example function and find the
call made to method addParamValue (also shown below). This statement
registers a validating function for the horizDim input called validateRange.
This validator checks the value of the horizDim input to make sure it is a
scalar, positive, integer less than or equal to 20:

validateRange = @(x)validateattributes(x, {'numeric'},
{'scalar', 'integer', 'positive', '<=', 20});
p.addParamValue('horizDim', 6, validateRange);

To see what happens when a validator fails, call photoPrint, this time setting
horizDim to a number greater than 20. Input Parser responds to this by
generating an error:

photoPrint('myPhoto', 'tiff', 'satin', 'RGB',
‘horizDim', 28, 'vertDim', 10)

??? Error using ==> photoPrint at 39
Argument 'horizDim' failed validation with error:
Expected input to be an array with all of the values <= 20.

After calling the parse method, your function either continues to execute
using the validated input data passed to it, or the Input Parser detects an
error and generates an error. This error is likely to be the result of input that
did not pass validation. If your function code catches this error, you might

Validating Inputs with Input Parser

be able to use data available in the Results property to give a full report on
what caused the error, or to correct the error and continue.

Examining One of the Values Passed. Execution of the parse method
builds a structure named Results from the arguments passed from the calling
function. This structure is accessible as a property of the input scheme object.
To get the value of any one input (e.g., argname), type

p.Results.argname

For example, to see what value was passed for the vertDim input, examine
p.Results.vertDim.

Example Function, Part 7 — Display Selected Input Values

Add the following lines to the end of photoPrint.m.

% Parse and validate all input arguments.
p.parse(filename, format, varargin{:});

% Show the value of a specific argument.
fprintf('\n'")
fprintf('\n%s%d%ss\n',
'The vertical dimension of the photo is '
p.Results.vertDim, ' inches.')

H

(After displaying the values, comment out or remove the two fprintf
statements shown above before going on to Part 8 of the example.)

Save and execute the file, passing at least the vertDim argument. The Input
Parser assigns those values you pass to the appropriate fields of the Results
structure. Display the value of the vertDim field:

photoPrint('myPhoto', 'tiff', 'flat', 'RGB',
"horizDim', 10, 'vertDim', 8)

The vertical dimension of the photo is 8 inches.

Examining All Values Passed. To get the value of all arguments passed to
photoPrint, examine the entire p.Results structure.

3-69

3 Functions and Scripts

Example Function, Part 8 — Display All Input Values
Add the following lines to the end of photoPrint.m:

% Show the value of a specific argument.
fprintf('\n'")

disp 'List of all arguments:'
disp(p.Results)

Save and execute the file, passing any number of the input arguments.
Examining p.Results displays the name of each input as a field, and the
value of each input as the value of that field:

photoPrint('myPhoto', 'tiff', 'flat', 'RGB',
‘horizDim', 10, 'vertDim', 8)

List of all arguments:
colorCode: 'RGB'
filename: 'myPhoto’
finish: 'flat'
format: 'tiff'
horizDim: 10
vertDim: 8

Substituting Default Values for Arguments Not
Passed

When the caller of your function passes fewer than the full number of
inputs in the argument list, the Input Parser substitutes default values for
those arguments that were not specified. This assumes, of course, that the
unspecified arguments were all defined as optional and given default values
when creating the input scheme.

If requested, the Input Parser returns a cell array p.UsingDefaults that lists
any inputs that were not passed in the argument list, and thus were replaced
with default values. If none of the inputs defaulted, then p.UsingDefaults is
an empty cell array.

3-70

Validating Inputs with Input Parser

Example Function, Part 9 — Show Defaulted Inputs

Add the following lines to the end of photoPrint.m:

% Show any arguments not specified in the call.
defaulted = p.UsingDefaults;
if ~isempty(defaulted)
fprintf('\n')
disp 'List of arguments given default values:'
disp(defaulted)
end

Save the file and run it without specifying the colorCode or vertDim
arguments:

photoPrint('myPhoto', 'tiff', 'flat', 'horizDim', 8)
At the end of the output, you should see

List of arguments given default values:
‘colorCode’
'vertDim'

Handling Unmatched Inputs

The Input Parser generates an error if your function is called with any
arguments that are not part of its input scheme. You can disable this error by
setting the KeepUnmatched property to true. When KeepUnmatched is in the
true state, the Input Parser does not throw an error, but instead stores any
arguments that are not in the input scheme in a structure accessible through
the Unmatched property of the object.

The KeepUnmatched property defaults to false. If all inputs match the
scheme, then p.Unmatched is a 1-by-1 struct array with no fields.

3-71

3 Functions and Scripts

3-72

Note Whenever you change the value of any writeable property of
inputParser, make sure that you make this change above the line containing

the call to the parse method. Otherwise, it has no effect on the parse.

Example Function, Part 10 — Show Unmatched Inputs

Insert the following statement into your example code, making sure that
it precedes the p.parse statement:

p.KeepUnmatched = true;

Then add the following lines at the end of the function code:

% List the names of any arguments not listed in the input scheme.
newArgs = p.Unmatched; fCell = fieldnames(newArgs);
if ~isempty(fCell)
fprintf('\n')
disp 'List of unmatched arguments:'
disp(newArgs)
end

Save and run the function, passing two arguments that are not defined in
the scheme.

photoPrint('myPhoto', 'tiff', ‘'satin', 'RGB', 'count', 7,
‘Name', 'Paul James')

At the end of the output, you should see

List of unmatched arguments:

count: 7
Name: Paul James'

Interpreting Arguments Passed as Structures

When the Input Parser receives an argument that is a scalar structure, it can
interpret the argument as either a single value that is to be assigned to a

Validating Inputs with Input Parser

variable, or a set of optional parameter/value arguments corresponding to the
structure’s field names and values. Setting an optional switch in the Input
Parser determines how a structure argument is to be interpreted.

Passing Arguments Packaged In a Structure

By setting the StructExpand property of the inputParser object to true,
you can pass optional arguments to your function in the form of a structure
instead of individually in the argument list. Your function code must set
StructExpand prior to calling the parse method.

Continue with the photoPrint example from the previous section.

Example Function, Part 11 — Expanding a Structure Input

Insert the following statement into your example code, making sure that
it precedes the p.parse statement:

p.StructExpand = true;

At the MATLAB command line, put the optional input arguments into a
structure, s:

s.finish = 'flat'; s.colorCode = 'RGB';
s.vertDim = 16; s.horizDim = 10;

Now call the function, passing all of the required arguments followed by the
structure argument, s:

photoPrint ('myPhoto', 'tiff', s)

Input Parser displays the results:

List of all arguments:
colorCode: 'RGB'
filename: 'myPhoto’
finish: 'flat'
format: 'tiff'
horizDim: 10
vertDim: 16

3-73

3 Functions and Scripts

3-74

Note If input structure s contains any fields that do not match variable
names in the input scheme, the Input Parser generates an error unless the
keepUnmatched property is set to true.

Overriding Arguments Passed In a Structure

If you want to pass your argument list in a structure, as described in the
previous section, but you also want to alter the value of one or more of these
arguments without having to modify the structure, you can do so by passing
both the structure and the modified argument.

This part of the example passes the value for horizDim in two places in the
argument list. Its value is 10 in s.horizDim, and 20 in the parameter/value
argument. The separate argument value overrides the structure field value:

s.finish = 'flat'; s.colorCode = 'RGB';
s.vertDim = 16; s.horizDim = 10;

photoPrint('myPhoto', 'tiff', s, 'horizDim', 20);
List of all arguments:
colorCode: 'RGB'
filename: 'myPhoto’
finish: 'flat'
format: 'tiff
horizDim: 20
vertDim: 16

Passing Data Packaged In a Structure

To pass a structure that you want to keep together as a single argument
value, rather than expand into multiple values, set the StructExpand
property to false.

Validating Inputs with Input Parser

Example Function, Part 12 — Receiving a Scalar Struct Input

Go back up to where you set p.StructExpand to true and change its value
to false:

p.StructExpand = false;

Using the same structure s as in the previous example,

s.finish = 'flat'; s.colorCode = 'RGB';
s.vertDim = 16; s.horizDim = 10;

call the example function passing 'testStruct' and s as a parameter/value
pair:

photoPrint('myPhoto', 'tiff', 'flat', 'RGB', 'testStruct', s);

You can see the effect of turning off the StructExpand option. In this case,
the Input Parser has not expanded the structure input s. Instead, it is the
value of a new input called testStruct which is shown in the “unmatched
arguments” list:

List of all arguments:
colorCode: 'RGB'
filename: 'myPhoto’
finish: 'flat'
format: 'tiff'
horizDim: 6
vertDim: 4

List of arguments given default values:
"horizDim' 'vertDim'

List of unmatched arguments:
testStruct: [1x1 struct]

Other Features of the Input Parser

The Input Parser also makes it easy to:

3-75

3 Functions and Scripts

3-76

® Enable or disable case-sensitive matching.
® Specify the function name to be used in the error message.

e Make copies of the input scheme for your function.

Enabling Case-Sensitive Matching

When you pass optional arguments in the function call, the Input Parser
compares the names of these arguments with the argument names in the
input scheme. By default, this comparison is not sensitive to letter case. An
argument name defined in the scheme as vertDim matches an argument
passed as VERTDIM in the function call.

You can override the default and make these comparisons case sensitive by
setting the CaseSensitive property of the object to true. MATLAB does
not error on a case mismatch, unless the KeepUnmatched property is set to
false (its default state).

Set KeepUnmatched to false and CaseSensitive to true in your photoPrint
file.

Example Function, Part 13 — Making Validation Case Sensitive

Go back up in your example code to the statement that set the
KeepUnmatched property. Change the value of KeepUnmatched to false,
and also set the CaseSensitive property to true:

p.KeepUnmatched = false;
p.CaseSensitive = true;

Save and run the function, using 'VERTDIM' as the name of the argument for
specifying the vertical dimension of the photo to be printed:

photoPrint('myPhoto', 'tiff', 'satin', 'RGB',
"horizDim', 8, 'VERTDIM', 10)

??? Error using ==> photoPrint at 42
Argument 'VERTDIM' did not match any valid parameter of the parser.

Validating Inputs with Input Parser

Case-Sensitive Matching with KeepUnmatched Enabled. This behavior
changes when you set KeepUnmatched back to true. In this state, the
argument that does not match due to its letter case is considered to be an
additional mismatched argument rather than an error.

Example Function, Part 14 — Case Sensitive Matching with No Error

Go back up in the example code to the statement that assigns the
KeepUnmatched property. Change its value to true:

p.KeepUnmatched = true;

Run the following command and observe that the Input Parser displays the
VERTDIM variable and its value in its list of unmatched arguments. MATLAB
does not generate an error in this case:

photoPrint('myPhoto', 'tiff', 'satin', 'RGB',
"horizDim', 8, 'VERTDIM', 10)

List of all arguments:
colorCode: 'RGB'
filename: 'myPhoto’
finish: 'satin'
format: 'tiff'
horizDim: 8
vertDim: 4

List of arguments given default values:
'vertDim'

List of unmatched arguments:
VERTDIM: 10

Adding the Function Name to Error Messages

Use the FunctionName property to include a function name of your choosing
in error messages thrown by the Input Parser. This applies only to errors
thrown by those validating functions you defined with the addRequired,
addOptional, or addParamValue methods.

3-77

3 Functions and Scripts

Example Function, Part 15 — Identifying the Function on an Error

Assign a name to the FunctionName property. (This would more commonly
be set to the name of the currently running function. The example sets it to
a different value to make its effect more noticeable.) Again, make sure that
this assignment is done prior to executing the parse command.

p.FunctionName = 'My test photoPrint function';

Save and run the function and observe text of the error message:
photoPrint('myPhoto', 'tiff', 'eggshell')

?? Error using ==> My test photoPrint function
Argument 'finish' failed validation @(x)any(strcmp(x,finishes)).

Making a Copy of the Input Scheme

The createCopy method enables you to make a copy of an existing input
scheme. Because the inputParser class uses handle semantics, you cannot
make a copy of the object using an assignment statement.

The following statement creates an inputParser object s that is a copy of p:

s = p.createCopy

Summary of inputParser Methods and Properties

Methods and Properties Used in Preparing the Input Scheme

Method Description
addRequired Define a required argument.
addOptional Define an optional argument.

3-78

Validating Inputs with Input Parser

Method Description
addParamValue Define a parameter/value argument.
createCopy Create a copy of the inputParser object
Property Description Data Structure Access
Parameters Names of arguments defined in the 1xN cell array of strings | Read
input scheme.
Methods and Properties Used in Parsing Inputs to Your Function
Method Description
parse Parse and validate the named inputs.
Property Description Data Structure Access
Results Names and values of arguments 1x1 structure Read
passed in a function call that are in
the input scheme.
Properties Used in Evaluating the Results
Property Description Data Structure | Defaultf Access
KeepUnmatched Enable or disable errors on 1x1 logical false | Write
unmatched arguments.
StructExpand Enable or disable passing 1x1 logical true Write
arguments in a structure.
CaseSensitive Enable or disable case-sensitive 1x1 logical false | Write
matching of argument names.
FunctionName Function name to be included in 1x1 logical empty | Write
error messages. string

3-79

3 Functions and Scripts

3-80

Property

Description

Data Structure

Default

Access

Unmatched

Names and values of arguments
passed in function call that are

not in the input scheme for this
function.

1x1 structure

N/A

Read

UsingDefaults

Names of arguments not passed in
function call that are given default
values.

1xN cell array

N/A

Read

Functions Provided By MATLAB®

Functions Provided By MATLAB

In this section...

“Overview” on page 3-81

“Functions” on page 3-81

“Built-In Functions” on page 3-82

“Overloaded MATLAB Functions” on page 3-83

“Internal Utility Functions” on page 3-84

Overview

Many of the functions provided with the MATLAB software are implemented
as program files just like the files you create with MATLAB. Other MATLAB
functions are precompiled executable programs called built-ins that run much
more efficiently. Many MATLAB functions are also overloaded so that they
handle different classes appropriately.

Functions

If you look in the subfolders of the toolbox\matlab folder, you can find
the sources to many of the functions supplied with MATLAB. Locate your
toolbox\matlab folder by typing

dir([matlabroot '\toolbox\matlab\'])

Any MATLAB functions that you write are just like any other functions coded
with MATLAB. When one of these functions is called, MATLAB parses and
executes each line of code in the file. It saves the parsed version of the function
in memory, eliminating parsing time on any further calls to this function.

Identifying Functions

To find out if a function is implemented with a program file, use the exist
function. The exist function searches for the name you enter on the MATLAB
path and returns a number identifying the source. If the source is a file with a
.m file extension, then exist returns the number 2. This example identifies
the source for the repmat function as a program file:

3-81

3 Functions and Scripts

3-82

exist repmat
ans =
2

The exist function also returns 2 for files that have a file type unknown to
MATLAB. However, if you invoke exist on a MATLAB function name, the
file type is known to MATLAB and returns 2 only on program files.

Viewing the Source Code

One advantage of functions implemented as files is that you can look at the
source code. This can help when you need to understand why the function
returns a value you did not expect, if you need to figure out how to code
something in MATLAB that is already coded in a function, or perhaps to help
you create a function that overloads one of the MATLAB functions.

To find the source code for any MATLAB function, use which:

which repmat
D:\matlabR14\toolbox\matlab\elmat\repmat.m

Built-In Functions

Functions that are frequently used or that can take more time to execute are
often implemented as executable files. These functions are called built-ins.

Unlike MATLAB program file functions, you cannot see the source code for
built-ins. Although most built-in functions do have a program file associated
with them, this file is there mainly to supply the help documentation for
the function. Take the reshape function, for example, and find it on the
MATLAB path:

which reshape
D:\matlabR14\toolbox\matlab\elmat\reshape.m

If you type this file out, you will see that it consists almost entirely of help
text. At the bottom is a call to the built-in executable image.

Functions Provided By MATLAB®

Identifying Built-In Functions
As with program file functions, you can identify which functions are built-ins

using the exist function. This function identifies built-ins by returning the
number 5:

exist reshape
ans =
5

Forcing a Built-In Call

If you overload any of the MATLAB built-in functions to handle a specific
class, then MATLAB always calls the overloaded function on that type. If, for
some reason, you need to call the built-in version, you can override the usual
calling mechanism using the builtin function. The expression

builtin('reshape', argtl, arg2, ..., argN);

forces a call to the MATLAB built-in function, reshape, passing the arguments
shown even though an overload exists for the class in this argument list.

Note With the exception of overloading, you should not create a MATLAB
program file that has the same name as a MATLAB built-in. Because built-in
functions have a higher precedence than most other types of program files
(with the exception of private and subfunctions), MATLAB does not recognize
functions that share the same name with a built-in.

Overloaded MATLAB Functions

An overloaded function is an additional implementation of an existing function
that is designed specifically to handle a certain class. When you pass an
argument of this type in a call to the function, MATLAB looks for the function
implementation that handles that type and executes that function code.

Each overloaded MATLAB function has a file on the MATLAB path. The files
for a certain class reside in a folder named with an @ sign followed by the
class name. For example, if you need to plot expressions of class polynom in
a manner that is unique to that class, you can overload the MATLAB plot

3-83

3 Functions and Scripts

3-84

function. To do this, create your own plotting function plot.m specifically for
use with objects of the polynom class. Then, create a folder called @polynom,
and store your own version of plot.m in that folder.

You can add your own overloads to any function. Just create a class folder for
the class you want to support for that function, and create a file that handles
the type in a manner different from the default. See Defining Classes —
Syntax and Developing Classes — Typical Workflow.

When you use the which command with the -all option, MATLAB returns
all occurrences of the file you are looking for. This is an easy way to find
functions that are overloaded:

which -all set % Show all implementations for 'set’

Internal Utility Functions

The MathWorks™ reserves the use of packages named internal for utility
functions used by internal MATLAB code. Functions that belong to an
internal package are intended for The MathWorks use only. Using functions
that belong to an internal package is strongly discouraged. These functions
are not guaranteed to work in a consistent manner from one release to the
next. In fact, any of these functions and classes could be removed from the
MATLAB software in any subsequent release without notice and without
documentation in the product release notes.

Any function called with a syntax that begins with the package name
internal is an internal function. For example,

internal.matlab. functionname

Any function on the MATLAB path that resides at any level under a folder
named +internal is an internal function. For example,

matlab\toolbox\matlab\+internal\functionname

Types of Functions

® “Overview of MATLAB Function Types” on page 4-2
¢ “Anonymous Functions” on page 4-3

¢ “Primary Functions” on page 4-15

¢ “Nested Functions” on page 4-16

e “Subfunctions” on page 4-33

e “Private Functions” on page 4-35

¢ “Overloaded Functions” on page 4-37

4 Types of Functions

Overview of MATLAB Function Types

There are essentially two ways to create a new function for your MATLAB
application: in a command entered at run-time, or in a file saved to permanent
storage.

The command-oriented function, called an anonymous function, is relatively
brief in its content. It consists of a single MATLAB statement that can
interact with multiple input and output arguments. The benefit of using
anonymous functions is that you do not have to edit and maintain a file for
functions that require only a brief definition.

There are several types of functions that you write and execute as a file.

The most basic of these are primary functions and subfunctions. Primary
functions are visible to other functions outside of the file they are defined

in, while subfunctions, generally speaking, are not. That is, you can call a
primary function from an anonymous function or from a function defined in a
separate file, but you can call a subfunction only from functions within the
same file. (See the Description section of the function_handle reference page
for information on making a subfunction externally visible.)

Two specific types of primary functions are the private and overloaded
function. Private functions are visible only to a limited group of other
functions. This type of function can be useful if you want to limit access to a
function, or when you choose not to expose the implementation of a function.
Overloaded functions act the same way as overloaded functions in most
computer languages. You can create multiple implementations of a function
so that each responds accordingly to different types of inputs.

The last type of MATLAB function is the nested function. Nested functions
are not an independent function type; they exist within the body of one of the
other types of functions discussed here (with the exception of anonymous
functions), and also within other nested functions.

4-2

Anonymous Functions

Anonymous Functions

In this section...

“Constructing an Anonymous Function” on page 4-3
“Arrays of Anonymous Functions” on page 4-6
“Outputs from Anonymous Functions” on page 4-7

“Variables Used in the Expression” on page 4-8

“Examples of Anonymous Functions” on page 4-11

Constructing an Anonymous Function

Anonymous functions give you a quick means of creating simple functions
without having to store your function to a file each time. You can construct an
anonymous function either at the MATLAB command line or in any function
or script.

The syntax for creating an anonymous function from an expression is
fhandle = @(arglist) expr

Starting from the right of this syntax statement, the term expr represents the
body of the function: the code that performs the main task your function is to
accomplish. This consists of any single, valid MATLAB expression. Next is
arglist, which is a comma-separated list of input arguments to be passed to
the function. These two components are similar to the body and argument list
components of any function.

Leading off the entire right side of this statement is an @ sign. The @ sign is
the MATLAB operator that constructs a function handle. Creating a function
handle for an anonymous function gives you a means of invoking the function.
It is also useful when you want to pass your anonymous function in a call to
some other function. The @ sign is a required part of an anonymous function
definition.

4-3

4 Types of Functions

4-4

Note Function handles not only provide access to anonymous functions. You
can create a function handle to any MATLAB function. The constructor uses a
different syntax: fhandle = @functionname (e.g., fhandle = @sin). To find
out more about function handles, see “Function Handles” on page 1-127 in
the Programming Fundamentals documentation.

The syntax statement shown above constructs the anonymous function,
returns a handle to this function, and stores the value of the handle in
variable fhandle. You can use this function handle in the same way as any
other MATLAB function handle.

Simple Example

The statement below creates an anonymous function that finds the square of
a number. When you call this function, MATLAB assigns the value you pass
in to variable x, and then uses x in the equation x."2:

sqr = @(x) x."2;

The @ operator constructs a function handle for this function, and assigns the
handle to the output variable sqr. As with any function handle, you execute
the function associated with it by specifying the variable that contains the
handle, followed by a comma-separated argument list in parentheses. The
syntax is

fhandle(arg1l, arg2, ..., argN)

To execute the sqr function defined above, type

a
a:
25

sqr(5)

Because sqgr is a function handle, you can pass it in an argument list to other
functions. The code shown here passes the sqr anonymous function to the
MATLAB quad function to compute its integral from zero to one:

quad(sqr, 0, 1)
ans =

Anonymous Functions

0.3333

A Two-Input Example

As another example, you could create the following anonymous function that
uses two input arguments, x and y. Variables A and B are already defined:

A =12 3 4]; B=1[5617];

sumAxBy = @(x, y) (A*x + B*y);

whos sumAxBy

Name Size Bytes Class

SumAxBy 1x1 16 function_handle

To call this function, assigning 5 to x and 7 to y, type
SumAxBy (5, 7)

Evaluating With No Input Arguments

For anonymous functions that do not take any input arguments, construct the
function using empty parentheses for the input argument list:

t = @() datestr(now);

Also use empty parentheses when invoking the function:
t()

ans =
04-Sep-2003 10:17:59

You must include the parentheses. If you type the function handle name
with no parentheses, MATLAB just identifies the handle; it does not execute
the related function:

t

@() datestr(now)

4-5

4 Types of Functions

4-6

Arrays of Anonymous Functions

To store multiple anonymous functions in an array, use a cell array. The
example shown here stores three simple anonymous functions in cell array A:

A= {@(x)x."2, @(y)y+10, @(x,y)x."2+y+10}
A =
@(x)x.”2 @(y)y+10 @(x,y)x."2+y+10

Execute the first two functions in the cell array by referring to them with the
usual cell array syntax, A{1} and A{2}:

A{1}(4) + A{2}(7)
ans =
33

Do the same with the third anonymous function that takes two input
arguments:

A{3}(4, 7)
ans =
33

Space Characters in Anonymous Function Elements

Note that while using space characters in the definition of any function can
make your code easier to read, spaces in the body of an anonymous function
that is defined in a cell array can sometimes be ambiguous to MATLAB. To
ensure accurate interpretation of anonymous functions in cell arrays, you
can do any of the following:

e Remove all spaces from at least the body (not necessarily the argument
list) of each anonymous function:

A = {@(x)x.”2, @(y)y+10, @(x, y)x."2+y+10};
¢ Enclose in parentheses any anonymous functions that include spaces:
A= {(e(x)x .~ 2), (@(y) y +10), (@(x, y) x."2 + y+10)};

e Assign each anonymous function to a variable, and use these variable
names in creating the cell array:

Anonymous Functions

Al = @(x)x .~ 2; A2 = @(y) y +10; A3 = @(x, y)x."2 + y+10;
A = {A1, A2, A3};

Outputs from Anonymous Functions

As with other MATLAB functions, the number of outputs returned by an
anonymous function depends mainly on how many variables you specify to
the left of the equals (=) sign when you call the function.

For example, consider an anonymous function getPersInfo that returns a
person’s address, home phone, business phone, and date of birth, in that order.
To get someone’s address, you can call the function specifying just one output:

address = getPersInfo(name);

To get more information, specify more outputs:

[address, homePhone, busPhone] = getPersInfo(name);

Of course, you cannot specify more outputs than the maximum number
generated by the function, which is four in this case.

Example

The anonymous getXLSData function shown here calls the MATLAB x1sread
function with a preset spreadsheet filename (records.x1s) and a variable
worksheet name (worksheet):

getXLSData = @(worksheet) xlsread('records.xls', worksheet);

The records.xls worksheet used in this example contains both numeric and
text data. The numeric data is taken from instrument readings, and the text
data describes the category that each numeric reading belongs to.

Because the MATLAB x1sread function is defined to return up to three
values (numeric, text, and raw data), getXLSData can also return this same
number of values, depending on how many output variables you specify to the
left of the equals sign in the call. Call getXLSData a first time, specifying
only a single (numeric) output, dNum:

dNum = getXLSData('Week 12');

4-7

4 Types of Functions

Display the data that is returned using a for loop. You have to use generic
names (v1, v2, v3) for the categories due to the fact that the text of the real
category names was not returned in the call:

for k = 1:1ength(dNum)
disp(sprintf('Ss vi: %2.2f v2: %d v3:
datestr(clock, 'HH:MM'), dNum(k,1), dNum(k
dNum(k,3)));
end

%',
»2)

Here is the output from the first call:

12:55 vi: 78.42 v2: 32 v3: 37
13:41 vi: 69.73 v2: 27 v3: 30
14:26 vi: 77.65 v2: 17 v3: 16
15:10 vi: 68.19 v2: 22 v3: 35

Now try this again, but this time specifying two outputs, numeric (dNum)
and text (dTxt):

[dNum, dTxt] = getXLSData('Week 12');

for k = 1:1length(dNum)
disp(sprintf('s%s %S: %2.2fF %S: %d %S: %d',
datestr(clock, 'HH:MM'), dTxt{1}, dNum(k,1),
dTxt{2}, dNum(k,2), dTxt{3}, dNum(k,3)))
end

This time, you can display the category names returned from the spreadsheet:

12:55 Temp: 78.42 HeatIndex: 32 WindChill: 37
13:41 Temp: 69.73 HeatIndex: 27 WindChill: 30
14:26 Temp: 77.65 HeatIndex: 17 WindChill: 16
15:10 Temp: 68.19 HeatIndex: 22 WindChill: 35

Variables Used in the Expression
Anonymous functions commonly include two types of variables:

e Variables specified in the argument list. These often vary with each
function call.

Anonymous Functions

e Variables specified in the body of the expression. MATLAB captures these
variables and holds them constant throughout the lifetime of the function
handle.

The latter variables must have a value assigned to them at the time you
construct an anonymous function that uses them. Upon construction,
MATLAB captures the current value for each variable specified in the body
of that function. The function will continue to associate this value with the
variable even if the value should change in the workspace or go out of scope.

The fact that MATLAB captures the values of these variables when the
handle to the anonymous function is constructed enables you to execute an
anonymous function from anywhere in the MATLAB environment, even
outside the scope in which its variables were originally defined. But it also
means that to supply new values for any variables specified within the
expression, you must reconstruct the function handle.

Changing Variables Used in an Anonymous Function

The second statement shown below constructs a function handle for an
anonymous function called parabola that uses variables a, b, and ¢ in the
expression. Passing the function handle to the MATLAB fplot function plots
it out using the initial values for these variables:

a=1.3; b = .2; c = 30;

parabola = @(x) a*x.”2 + b*x + cC;
fplot(parabola, [-25 25])

4-9

4 Types of Functions

P o=
Fia Edt Var bumt Took Wedea el
IS ERafME e 0E = O
L]
B fri
I"l\ IIIII,-
B0 ' _."
st ! .-"'I
N /
" !
o0t h ___.-"-
o AN e
100 ~ _,,/
= a5 = o 3 w1 @ =

If you change the three variables in the workspace and replot the figure, the
parabola remains unchanged because the parabola function is still using the
initial values of a, b, and c:

a = -3.9; b = 52; c = 0;
fplot(parabola, [-25 25])

FETTEE——— (=T
_I'h Edt Vew Jumt Tooh ‘Windea Halp
e dd aans |« 0B =0
o0
B0 5'!. ;,n'i
"'l\ IIIII.l
pof /
cal % i
- /
\". L
0} hY ri
X0r ‘\"-\ /-';
100 " _,,/
R T R o 5 MW 15 O =5

4-10

Anonymous Functions

To get the function to use the new values, you need to reconstruct the function
handle, causing MATLAB to capture the updated variables. Replot using the
new construct, and this time the parabola takes on the new values:

a = -3.9; b = 52; c = 0;
parabola = @(x) a*x.”2 + b*x + cC;
fplot(parabola, [-25 25])

=10l %]

Fis Edt Veaw Jumt Tock ‘Windea Help

@S I Rad®E « 0E =0

000 F

il i i i i i i i i i
-!'5 - A5 40 =] o] 0 15 x F-]

For the purposes of this example, there is no need to store the handle to the
anonymous function in a variable (parabola, in this case). You can just
construct and pass the handle right within the call to fplot. In this way, you
update the values of a, b, and ¢ on each call:

fplot(@(x) a*x.”2 + b*x + ¢, [-25 25])

Examples of Anonymous Functions

This section shows a few examples of how you can use anonymous functions.
These examples are intended to show you how to program with this type of
function. For more mathematically oriented examples, see the MATLAB
Mathematics documentation.

The examples in this section include

4-11

4 Types of Functions

4-12

e “Example 1 — Passing a Function to quad” on page 4-12

¢ “Example 2 — Multiple Anonymous Functions” on page 4-13

Example 1 — Passing a Function to quad

The equation shown here has one variable t that can vary each time you call
the function, and two additional variables, g and omega. Leaving these two
variables flexible allows you to avoid having to hardcode values for them in
the function definition:

X = g * cos(omega * t)

One way to program this equation is to write a function, and then create a
function handle for it so that you can pass the function to other functions, such
as the MATLAB quad function as shown here. However, this requires creating
and maintaining a new file for a purpose that is likely to be temporary, using
a more complex calling syntax when calling quad, and passing the g and
omega parameters on every call. Here is the function:

function f = vOut(t, g, omega)
f =g * cos(omega * t);

This code has to specify g and omega on each call:

g = 2.5; omega = 10;
quad(@vout, 0, 7, [I, [], g, omega)
ans =

0.1935

quad(@VOUt7 '5s 5: []: []7 g, Omega)
ans =
-0.1312

You can simplify this procedure by setting the values for g and omega just

once at the start, constructing a function handle to an anonymous function
that only lasts the duration of your MATLAB session, and using a simpler
syntax when calling quad:

g = 2.5; omega = 10;
f @(t) (g * cos(omega * t));

Anonymous Functions

quad(f, 0, 7)

ans

0.1935

quad(f, -5, 5)

ans

-0.1312

To preserve an anonymous function from one MATLAB session to the next,
save the function handle to a MAT-file

save anon.mat f

and then load it into the MATLAB workspace in a later session:

load anon.mat f

Example 2 — Multiple Anonymous Functions

This example solves the following equation by combining two anonymous
functions:

gle) =

The equivalent anonymous function for this expression is

g:

1
-l-i.tg +ex+ dx
1]

@(c) (quad(@(x)

(x.”"2 + ¢c*x + 1), 0,

1))

This was derived as follows. Take the parenthesized part of the equation (the
integrand) and write it as an anonymous function. You do not need to assign
the output to a variable as it will only be passed as input to the quad function:

@(x)

(x."2 + ¢c*x + 1)

Next, evaluate this function from zero to one by passing the function
handle, shown here as the entire anonymous function, to quad. You need to
temporarily set ¢ to some value to test this:

4-13

4 Types of Functions

c = 2;
quad(@(x) (x."2 + ¢c*x + 1), 0, 1)

ans =
2.3333

Supply the value for ¢ by constructing an anonymous function for the entire
equation and you are done:

g = @(c) (quad(@(x) (x.”2 + c*x + 1), 0, 1));
g(2)

ans =
2.3333

4-14

Primary Functions

Primary Functions

The first function in any MATLAB program file is called the primary function.
Following the primary function can be any number of subfunctions, which can
serve as subroutines to the primary function.

Under most circumstances, the primary function is the only function in the file
that you can call from the MATLAB command line or from another function.
You invoke this function using the name of the file in which it is defined.

For example, the average function shown here resides in the file average.m:

function y = average(x)
% AVERAGE Mean of vector elements.

y = sum(x)/length(x); % Actual computation

You can invoke this function from the MATLAB command line with this
command to find the average of three numbers:

average([12 60 42])

Note that it is customary to give the primary function the same name as the
file in which it resides. If the function name differs from the filename, then
you must use the filename to invoke the function.

4-15

4 Types of Functions

Nested Functions

4-16

In this section...

“Writing Nested Functions” on page 4-16

“Calling Nested Functions” on page 4-18

“Variable Scope in Nested Functions” on page 4-19

“Using Function Handles with Nested Functions” on page 4-21

“Restrictions on Assigning to Variables” on page 4-26

“Examples of Nested Functions” on page 4-27

Writing Nested Functions

You can define one or more functions within another function in your
MATLAB application. These inner functions are said to be nested within
the function that contains them. You can also nest functions within other
nested functions. You cannot however define a nested function inside any of
the MATLAB program control statements. This includes any block of code
that is controlled by an if, else, elseif, switch, for, while, try, or catch
statement.

To write a nested function, simply define one function within the body of
another function in your program. Like any function, a nested function
contains any or all of the components described in “Basic Parts of a Program
File” on page 3-10 in the Programming Fundamentals documentation. In
addition, you must always terminate a nested function with an end statement:
function x = A(p1, p2)
function y = B(p3)
end

end

Nested Functions

Note Functions do not normally require a terminating end statement. This
rule does not hold, however, when you nest functions. If a program file
contains one or more nested functions, you must terminate a/l functions
(including subfunctions) in the file with end, whether or not they contain
nested functions.

Example — More Than One Nested Function

This example shows function A and two additional functions nested inside A
at the same level:

function x = A(p1, p2)

function y

= B(p3)
end
function z = C(p4)
end
end

Example — Multiply Nested Functions
This example shows multiply nested functions, C nested inside B, and B in A:

function x = A(p1, p2)
..function y = B(p3)
.function z = C(p4)
end
end

end

4-17

4 Types of Functions

4-18

Calling Nested Functions
You can call a nested function

¢ From the level immediately above it. (In the following code, function A can
call B or D, but not C or E.)

¢ From a function nested at the same level within the same parent function.
(Function B can call D, and D can call B.)

® From a function at any lower level. (Function C can call B or D, but not E.)
function A(x, y)

B(x, y);
D(y);

o°

Primary function

function B(x, y)
C(x);
D(y);

o°

Nested in A

function C(x)
D(x);
end

end

o°

Nested in B

o°

function D(x) Nested in A

E(x);

function E(x)

o°

Nested in D
end
end
end

You can also call a subfunction from any nested function in the same file.

You can pass variable numbers of arguments to and from nested
functions, but you should be aware of how MATLAB interprets varargin,
varargout, nargin, and nargout under those circumstances. See "Passing
Optional Arguments to Nested Functions" in the MATLAB Programming
Fundamentals documentation for more information on this.

Nested Functions

Note If you construct a function handle for a nested function, you can call the
nested function from any MATLAB function that has access to the handle.
See “Using Function Handles with Nested Functions” on page 4-21.

Nested functions are not accessible to the str2func or feval function. You
cannot call a nested function using a handle that has been constructed with
str2func. And, you cannot call a nested function by evaluating the function
name with feval. To call a nested function, you must either call it directly by
name, or construct a function handle for it using the @ operator.

Variable Scope in Nested Functions

The scope of a variable is the range of functions that have direct access to the
variable to set, modify, or acquire its value. When you define a local (i.e.,
nonglobal) variable within a function, its scope is normally restricted to that
function alone. For example, subfunctions do not share variables with the
primary function or with other subfunctions. This is because each function
and subfunction stores its variables in its own separate workspace.

Like other functions, a nested function has its own workspace. But it also has
access to the workspaces of all functions in which it is nested. So, for example,
a variable that has a value assigned to it by the primary function can be read
or overwritten by a function nested at any level within the primary. Similarly,
a variable that is assigned in a nested function can be read or overwritten by
any of the functions containing that function.

In the following two examples, variable x is stored in the workspace of the
outer varScope function and can be read or written to by all functions nested
within it.

4-19

4 Types of Functions

4-20

function varScopei
X = 5;
nestfuni
function nestfunt
nestfun2

function nestfun2
X =X + 1
end
end
end

function varScope2
nestfuni
function nestfunt
nestfun2

function nestfun2
X = 5;
end
end
X =X + 1
end

As a rule, a variable used or defined within a nested function resides in the
workspace of the outermost function that both contains the nested function
and accesses that variable. The scope of this variable is then the function to
which this workspace belongs, and all functions nested to any level within
that function.

In the next example, the outer function, varScope3, does not access variable
x. Following the rule just stated, x is unknown to the outer function and
thus is not shared between the two nested functions. In fact, there are

two separate x variables in this example: one in the function workspace of
nestfuni and one in the function workspace of nestfun2. When nestfun2
attempts to update x, it fails because x does not yet exist in this workspace:

function varScope3
nestfuni
nestfun2

function nestfuni
X = 5;
end

function nestfun2
X =x + 1
end
end

Nested Functions

The Scope of Output Variables

Variables containing values returned by a nested function are not in the scope
of outer functions. In the two examples shown here, the one on the left fails
in the second to last line because, although the value of y is returned by the
nested function, the variable y is local to the nested function, and unknown to
the outer function. The example on the right assigns the return value to a
variable, z, and then displays the value of z correctly.

Incorrect

Correct

function varScope4
X = 5; nestfun;
function y = nestfun
y = x +1;

function varScope5
X = 5;
z = nestfun;

function y nestfun
+

end y = X 1;

end
y

end z
end

Using Function Handles with Nested Functions

Every function has a certain scope, that is, a certain range of other functions
to which it is visible. A function’s scope determines which other functions can
call it. You can call a function that is out of scope by providing an alternative
means of access to it in the form of a function handle. (The function handle,
however, must be within the scope of its related function when you construct
the handle.) Any function that has access to a function handle can call the
function with which the handle is associated.

Note Although you can call an out of scope function by means of a function
handle, the handle itself must be within the scope of its related function at
the time it is constructed.

The section on “Calling Nested Functions” on page 4-18 defines the scope of

a nested function. As with other types of functions, you can make a nested
function visible beyond its normal scope with a function handle. The following
function getCubeHandle constructs a handle for nested function findCube

4-21

4 Types of Functions

and returns its handle, h, to the caller. The @ sign placed before a function
name (e.g., @findCube) is the MATLAB operator that constructs a handle
for that function:

function h = getCubeHandle
h = @findCube; % Function handle constructor

function cube = findCube (X) % Nested function
cube = X .~ 3;
end
end

Call getCubeHandle to obtain the function handle to the nested function
findCube. Assign the function handle value returned by getCubeHandle to an
output variable, cubeIt in this case:

cubeIt = getCubeHandle;

You can now use this variable as a means of calling findCube from outside of
its program file:

cubeIt(8)
ans =
512

Note When calling a function by means of its handle, use the same syntax
as if you were calling a function directly. But instead of calling the function
by its name (e.g., strcmp (S1, S2)), use the variable that holds the function
handle (e.g., fThandle(S1, S2)).

Function Handles and Nested Function Variables

One characteristic of nested functions that makes them different from other
MATLAB functions is that they can share nonglobal variables with certain
other functions in the same file. A nested function nFun can share variables
with any outer function that contains nFun, and with any function nested
within nFun. This characteristic has an impact on how certain variables are
stored when you construct a handle for a nested function.

4-22

Nested Functions

Defining Variables When Calling Via Function Handle. The example
below shows a primary function getHandle that returns a function handle for
the nested function nestFun. The nestFun function uses three different types
of variables. The VLoc variable is local to the nested function, VInp is passed in
when the nested function is called, and VExt is defined by the outer function:

function h = getHandle(X)
h = @nestFun;
VExt = someFun(X);

function nestFun(VInp)
VLoc = 173.5;
doSomeTask(VInp, VLoc, VExt);
end

end

As with any function, when you call nestFun, you must ensure that you
supply the values for any variables it uses. This is a straightforward matter
when calling the nested function directly (that is, calling it from getHandle).
VLoc has a value assigned to it within nestFun, VInp has its value passed in,
and VExt acquires its value from the workspace it shares with getHandle.

However, when you call nestFun using a function handle, only the nested
function executes; the outer function, getHandle, does not. It might seem at
first that the variable VExt, otherwise given a value by getHandle, has no
value assigned to it in the case. What in fact happens though is that MATLAB
stores variables such as VExt inside the function handle itself when it is being
constructed. These variables are available for as long as the handle exists.

The VExt variable in this example 1s considered to be externally scoped with
respect to the nested function. Externally scoped variables that are used in
nested functions for which a function handle exists are stored within the
function handle. So, function handles not only contain information about
accessing a function. For nested functions, a function handle also stores the
values of any externally scoped variables required to execute the function.

Example Using Externally Scoped Variables

The sCountFun and nCountFun functions shown below return function handles
for subfunction subCount and nested function nestCount, respectively.

4-23

4 Types of Functions

4-24

These two inner functions store a persistent value in memory (the value 1s
retained in memory between function calls), and then increment this value
on every subsequent call. subCount makes its count value persistent with
an explicit persistent declaration. In nestCount, the count variable is
externally scoped and thus is maintained in the function handle:

Using a Subfunction Using a Nested Function
function h = sCountFun(X) function h = nCountFun (X)
h = @subCount; h = @nestCount;
count = X count = X
subCount (0, count); function nestCount(incr)
function subCount(incr, ini) count = count + incr
persistent count; end
initializing = nargin > 1; end
if initializing

count = ini; else

count = count + incr
end

When sCountFun executes, it passes the initial value for count to the
subCount subfunction. Keep in mind that the count variable in sCountFun is
not the same as the count variable in subCount; they are entirely independent
of each other. Whenever subCount is called via its function handle, the value
for count comes from its persistent place in memory.

In nestCount, the count variable again gets its value from the primary
function when called from within the file. However, in this case the count
variable in the primary and nested functions are one and the same. When
nestCount is called by means of its function handle, the value for count is
assigned from its storage within the function handle.

Running the Example. The subCount and nestCount functions increment a
value in memory by another value that you pass as an input argument. Both
of these functions give the same results.

Get the function handle to nestCount, and initialize the count value to a
four-element vector:

h = nCountFun([100 200 300 400])

Nested Functions

count =
100 200 300 400

Increment the persistent vector by 25, and then by 42:

h(25)
count =
125 225 325 425

h(42)
count =
167 267 367 467

Now do the same using sCountFun and subCount, and verify that the results
are the same.

Note If you construct a new function handle to subCount or nestCount, the
former value for count is no longer retained in memory. It is replaced by
the new value.

Separate Instances of Externally Scoped Variables

The code shown below constructs two separate function handles to the same
nested function, nestCount, that was used in the last example. It assigns
the handles to fields counter1 and counter2 of structure s. These handles
reference different instances of the nestCount function. Each handle also
maintains its own separate value for the externally scoped count variable.

Call nCountFun twice to get two separate function handles to nestCount.
Initialize the two instances of count to two different vectors:

s.counter1i = nCountFun([100 200 300 400]);
count =
100 200 300 400

s.counter2 = nCountFun([-100 -200 -300 -400]);

count =
-100 -200 -300 -400

4-25

4 Types of Functions

4-26

Now call nestCount by means of each function handle to demonstrate that
MATLAB increments the two count variables individually.

Increment the first counter:

s.counter1(25)
count =
125 225 325 425
s.counter1(25)
count =
150 250 350 450

Now increment the second counter:

s.counter2(25)
count =
-75 -175 -275 -375
s.counter2(25)
count =
-50 -150 -250 -350

Go back to the first counter and you can see that it keeps its own value for
count:

s.counterit(25)
count =
175 275 375 475

Restrictions on Assigning to Variables

The scoping rules for nested, and in some cases anonymous, functions require
that all variables used within the function be present in the text of the code.
Adding variables to the workspace of this type of function at run time is not
allowed.

MATLAB issues an error if you attempt to dynamically add a variable to the
workspace of an anonymous function, a nested function, or a function that
contains a nested function. Examples of operations that might use dynamic
assignment in this way are shown in the table below.

Nested Functions

How to Avoid Using Dynamic
Type of Operation Assignment

Evaluating an expression using | As a general suggestion, it is best to avoid
eval or evalin, or assigning a using the eval, evalin, and assignin

variable with assignin functions altogether.

Loading variables from a Use the form of load that returns a

MAT-file with the load function | MATLAB structure.

Assigning to a variable in a Convert the script to a function, where

MATLAB script argument- and result-passing can often
clarify the code as well.

Assigning to a variable in the You can declare the variable to be

MATLAB debugger global. For example, to create a variable

X for temporary use in debugging, use

K>> global X; X = value

One way to avoid this error in the other cases is to pre-declare the variable in
the desired function.

Examples of Nested Functions

This section shows a few examples of how you can use nested functions. These
examples are intended to show you how to program with this type of function.
For more mathematically oriented examples, see the MATLAB Mathematics
documentation.

The examples in this section include

¢ “Example 1 — Creating a Function Handle for a Nested Function” on page
4-27

¢ “Example 2 — Function-Generating Functions” on page 4-29

Example 1 — Creating a Function Handle for a Nested Function

The following example constructs a function handle for a nested function and
then passes the handle to the MATLAB fplot function to plot the parabola

4-27

4 Types of Functions

4-28

shape. The makeParabola function shown here constructs and returns a
function handle fhandle for the nested parabola function. This handle gets
passed to fplot:

function fhandle = makeParabola(a, b, c)
% MAKEPARABOLA returns a function handle with parabola
% coefficients.

fhandle = @parabola; % @ is the function handle constructor

function y = parabola(x)
y = a*x.”2 + b*x + c;
end

end

Assign the function handle returned from the call to a variable (h) and
evaluate the function at points 0 and 25:

=
1}

makeParabola(1.3, .2, 30)

@makeParabola/parabola

h(25)
ans =
847.5000

Nested Functions

Now pass the function handle h to the fplot function, evaluating the

parabolic equation from x

-25 to X

+25:

fplot(h, [-25 25])

T alol=l

Fis Edt Veaw Jumt Tock ‘Windea Help

hEedE I Raad®E «w 08 =0

B

¥ysEByE

=
N

:rﬂ'
B
i
=]
[
(=]
o
B

Example 2 — Function-Generating Functions

The fact that a function handle separately maintains a unique instance of the
function from which it is constructed means that you can generate multiple
handles for a function, each operating independently from the others. The
function in this example makes IIR filtering functions by constructing
function handles from nested functions. Each of these handles maintains its
own internal state independent of the others.

The function makeFilter takes IIR filter coefficient vectors a and b and
returns a filtering function in the form of a function handle. Each time a new
input value x_ is available, you can call the filtering function to get the new
output value y_. Each filtering function created by makeFilter keeps its own
private a and b vectors, in addition to its own private state vector, in the form
of a transposed direct form II delay line:

function [filtfcn, statefcn] = makeFilter(b, a)
% FILTFCN = MAKEFILTER(B, A) creates an IIR filtering
% function and returns it in the form of a function handle,

4-29

4 Types of Functions

o°

FILTFCN. Each time you call FILTFCN with a new filter
input value, it computes the corresponding new filter
output value, updating its internal state vector at the
same time.

d® o° o° o°

o°

[FILTFCN, STATEFCN] = MAKEFILTER(B, A) also returns a
function (in the form of a function handle, STATEFCN)

that can return the filter's internal state. The internal
state vector is in the form of a transposed direct form

IT delay line.

o® o° o°

o°

o°

Initialize state vector. To keep this example a bit
simpler, assume that a and b have the same length.
Also assume that a(1) is 1.

o°

o°

<

= zeros(size(a));

filtfcn = @iirFilter;
statefcn = @getState;

function yn = iirFilter(xn)
% Update the state vector
V(1) = v(2) + b(1) * xn;
v(2:end-1) = v(3:end) + b(2:end-1) * xn -
a(2:end-1) * v(1);
v(end) = b(end) * xn - a(end) * v(1);

% Output is the first element of the state vector.

yn = v(1);
end

function vOut = getState
vout = v;
end
end

This sample session shows how makeFilter works. Make a filter that has
a decaying exponential impulse response and then call it a few times in
succession to see the output values change:

4-30

Nested Functions

[filt1, statel] = makeFilter([1 O], [1

% First input to the filter is 1.
filt1(1)
ans =

1

% Second input to the filter is O.
filt1(0)
ans =

0.5000

filt1(0)
ans =
0.2500

% Show the filter's internal state.
statel ()
ans =

0.2500 0.1250

% Hit the filter with another impulse.
filt1(1)
ans =

1.1250

% How did the state change?
statel ()
ans =

1.1250 0.5625

% Make an averaging filter.
filt2 = makeFilter([1 1 11/3, [1 0 0]);

% Put a step input into filt2.
filt2(1)
ans =

0.3333

filt2(1)

-.51);

4-31

4 Types of Functions

4-32

ans =
0.6667

filt2(1)
ans =
]

% The two filter functions can be used independently.
filt1(0)
ans =

0.5625

As an extension of this example, suppose you were looking for a way to
develop simulations of different filtering structures and compare them. This
might be useful if you were interested in obtaining the range of values taken
on by elements of the state vector, and how those values compare with a
different filter structure. Here is one way you could capture the filter state at
each step and save it for later analysis:

Call makeFilter with inputs v1 and v2 to construct function handles to the
iirFilter and getState subfunctions:

[filtfcn, statefcn] = makeFilter(vi, v2);

Call the iirFilter and getState functions by means of their handles,
passing in random values:

X = rand(1, 20);
for k = 1:20

y(k) = filtfcen(x(k));

states{k} = statefcn(); % Save the state at each step.
end

Subfunctions

Subfunctions

In this section...

“Overview” on page 4-33
“Calling Subfunctions” on page 4-34
“Accessing Help for a Subfunction” on page 4-34

Overview

MATLAB program files can contain code for more than one function.
Additional functions within the file are called subfunctions, and these are only
visible to the primary function or to other subfunctions in the same file.

Each subfunction begins with its own function definition line. The functions
immediately follow each other. The various subfunctions can occur in any
order, as long as the primary function appears first:

function [avg, med] = newstats(u) % Primary function

% NEWSTATS Find mean and median with internal functions.
n = length(u);

avg = mean(u, n);

med = median(u, n);

function a = mean(v, n) % Subfunction
% Calculate average.
a = sum(v)/n;

function m = median(v, n) % Subfunction
% Calculate median.
w = sort(v);
if rem(n, 2) ==
m=w((n+tl) / 2);
else
m = (w(n/2) + w(n/2+1)) / 2;
end

4-33

4 Types of Functions

4-34

The subfunctions mean and median calculate the average and median of the
input list. The primary function newstats determines the length of the list
and calls the subfunctions, passing to them the list length n.

Subfunctions cannot access variables used by other subfunctions, even within
the same file, or variables used by the primary function of that file, unless
you declare them as global within the pertinent functions, or pass them as
arguments.

Calling Subfunctions

When you call a function from within a program file, MATLAB first checks the
file to see if the function is a subfunction. It then checks for a private function
(described in the following section) with that name, and then for a standard
program file or built-in function on your search path. Because it checks for

a subfunction first, you can override existing files using subfunctions with
the same name.

Accessing Help for a Subfunction

You can write help for subfunctions using the same rules that apply to
primary functions. To display the help for a subfunction, precede the
subfunction name with the name of the file that contains the subfunction
(minus file extension) and a > character.

For example, to get help on subfunction mysubfun in file myfun.m, type

help myfun>mysubfun

Private Functions

Private Functions

In this section...

“Overview” on page 4-35
“Private Folders” on page 4-35

“Accessing Help for a Private Function” on page 4-36

Overview

Private functions are functions that reside in subfolders with the special
name private. These functions are called private because they are visible
only to functions and scripts that meet these conditions:

e A function that calls a private function must be defined in a program file
that resides in the folder immediately above that private subfolder.

e A script that calls a private function must itself be called from a function
that has access to the private function according to the above rule.

For example, assume the folder newmath is on the MATLAB search path.
A subfolder of newmath called private can contain functions that only the
functions in newmath can call.

Because private functions are invisible outside the parent folder, they can use
the same names as functions in other folders. This is useful if you want to
create your own version of a particular function while retaining the original in
another folder. Because MATLAB looks for private functions before standard
functions, it finds a private function named test.m before a nonprivate
program file named test.m.

Primary functions and subfunctions can also be implemented as private
functions.

Private Folders

You can create your own private folders simply by creating subfolders called
private using the standard procedures for creating folders on your computer.
Do not place these private folders on your path.

4-35

4 Types of Functions

4-36

Accessing Help for a Private Function

You can write help for private functions using the same rules that apply to
primary functions. To display the help for a private function, precede the
private function name with private/.

For example, to get help on private function myprivfun, type

help private/myprivfun

Overloaded Functions

Overloaded Functions

Overloaded functions are useful when you need to create a function that
responds to different types of inputs accordingly. For instance, you might
want one of your functions to accept both double-precision and integer input,
but to handle each type somewhat differently. You can make this difference
invisible to the user by creating two separate functions having the same
name, and designating one to handle double types and one to handle integers.

MATLAB overloaded functions reside in subfolders having a name starting
with the symbol @ and followed by the name of a recognized MATLAB class.
For example, functions in the \@double folder execute when invoked with
arguments of MATLAB type double. Those in an \@int32 folder execute
when invoked with arguments of MATLAB type int32.

See “Overloading MATLAB Functions” for more information on overloading
functions in MATLAB.

4-37

4 Types of Functions

4-38

Using Objects

o “MATLAB Objects” on page 5-2

® “General Purpose Vs. Specialized Arrays” on page 5-5
o “Key Object Concepts” on page 5-8

¢ “Creating Objects” on page 5-11

o “Accessing Object Data” on page 5-14

e “Calling Object Methods” on page 5-16

® “Desktop Tools Are Object Aware” on page 5-19

® “Getting Information About Objects” on page 5-21

® “Copying Objects” on page 5-26

® “Destroying Objects” on page 5-31

5 Using Objects

MATLAB Obijects

In this section...

“Getting Oriented” on page 5-2

“Getting Comfortable with Objects” on page 5-2

“What Are Objects and Why Use Them?” on page 5-2
“Accessing Objects” on page 5-3

“Objects In the MATLAB Language” on page 5-4
“Other Kinds of Objects Used by MATLAB” on page 5-4

Getting Oriented

This chapter provides information for people using objects. It does not provide
a thorough treatment of object-oriented concepts, but instead focuses on what
you need to know to use the objects provided with MATLAB.

If you are interested in object-oriented programming in the MATLAB
language, see Object-Oriented Programming. For background information on
objects, see object-oriented design.

Getting Comfortable with Obijects

MATLAB uses objects because they are a convenient way to package data.
Working with objects in MATLAB is like working with any variables and is
often more convenient because objects are optimized for specific purposes.
Think of an object as a neatly packaged collection of data that includes
functions that operate on the data. The documentation for any particular
object describes how to use it.

What Are Objects and Why Use Them?

In the simplest sense, objects are special-purpose variables that have a
specific set of operations that you can perform on the data they contain. You
do not need to know how the operations are implemented or how the data

is stored. This makes objects modular and easy to pass within application

http://en.wikipedia.org/wiki/Object-oriented_design

MATLAB® Obijects

programs. It also isolates your code from changes to the object’s design and
implementation.

In a more general sense, objects are organized collections of data and functions
that have been designed for specific purposes. For example, an object might be
designed to contain time series data that consists of value/time-sample pairs
and associated information like units, sample uniformity, and so on. This
object could have a set of specific operations designed to perform analysis,
such as filtering, interpolating, and plotting. The following sections provide
examples of such objects.

Accessing Objects

You access an object with its variable name. Interacting with objects variables
in MATLAB software is really no different from interacting with any other
variables. Basically, you can perform the same common operations on
variables whether they hold numbers or specialized objects. For example, you
can do the following things with objects:

e (Create it and assigned a variable name so you can reference it again

® Assign or reassign data to it (see “Accessing Object Data” on page 5-14)

® QOperate on its data (see “Calling Object Methods” on page 5-16)

e Convert it to another class (if this operation is supported by the object’s
class)

® Save it to a MAT-file so you can reload it later (see save)

® Copy it (see “Copying Objects” on page 5-26)

® (lear it from the workspace (clear)

Any particular object might have restrictions on how you create it, access its
data, or what operations you can perform on it. Refer to the documentation

for the particular MATLAB object for a description of what you can do with
that object.

See “Variables” on page 2-8 for a general discussion of MATLAB variables.

5-3

5 Using Objects

5-4

Objects In the MATLAB Language

The MATLAB language uses many specialized objects. For example, timer
objects execute code at a certain time interval, MException objects capture
information when errors occur, the serial object enables you to communicate
with devices connected to your computer’s serial port, and so on. MATLAB
toolboxes often define objects to manage the specific data and analyses
performed by the toolbox.

All of these objects are designed to provide specific functionality that is not as
conveniently available from general purpose language components.

Other Kinds of Objects Used by MATLAB

The MATLAB language enables you to use other kinds of objects in your
MATLAB programs. The following objects are different from the MATLAB
objects described in this documentation. See the individual sections
referenced below for information on using these objects.

e Handle Graphics® objects represent objects used to create graphs and
GUIs. These objects provide a set/get interface to property values, but
are not extensible by subclassing. See “Handle Graphics Objects” for more
information.

® Sun Java objects can be used in MATLAB code enabling you to access the
capabilities of Java classes. See “Using Sun Java Classes in MATLAB
Software” for more information.

¢ Microsoft COM objects enable you to integrate these software components
into your application. See “COM Support for MATLAB Software” for more
information.

® Microsoft .NET objects enable you to integrate .NET assemblies into
your application. See “MATLAB Interface to NET Framework” for more
information.

e User-defined MATLAB objects created prior to Version 7.6 used different
syntax for class definition (no classdef block) and exhibit other differences.
See “Compatibility with Previous Versions ” for more information.

General Purpose Vs. Specialized Arrays

General Purpose Vs. Specialized Arrays

In this section...
“How They Differ” on page 5-5

“Using General-Purpose Data Structures” on page 5-5

“Using Specialized Objects” on page 5-6

How They Differ

The MATLAB language enables you to use both general-purpose and
specialized arrays. For example, numeric multidimensional arrays and
structures provide general-purpose data storage. You typically extract data
from the array and pass this data to functions (e.g., to perform mathematical
analysis). Then, you store the data back in general-purpose arrays.

When using a specialized object, you typically pass the object’s data to a
function that creates the object. Once you have created the object, you use
specially defined functions to operate on the data. These functions are unique
to the object and are designed specifically for the type and structure of the
data contained by the object.

Using General-Purpose Data Structures

A commonly used general-purpose data structure is a structure array. For
example, these statements create a MATLAB struct (a MATLAB structure

array):
s.Data = rand(10,1);
s.Time = .01:.01:.1;
s.Name = 'Datail’;
s.Units = 'seconds';

The structure s contains two arrays of numbers. However, s is a generic
type in the sense that MATLAB does not define special functions to operate
on the data in this particular structure. For example, while s contains two
fields, Data and Time, that would be useful to plot, you cannot pass s to the
plot function:

5-5

5 Using Objects

5-6

plot(s)
??? Error using ==> plot
Not enough input arguments.

While s certainly has enough information to create a plot of Data versus Time,
plot cannot access this data because structures like s can contain any values
in its fields and the fields can have any name. Just because one field is named
Data does not force you to assign data to that field.

To plot the data in s, you would have to extract the data from the fields,
pass them as numeric arrays in the desired order to the plot function, add a
title, labels, and so on:

plot(s.Time,s.Data)

title(['Time Series Plot: ' s.Name])
xlabel(['Time (' s.Units ')'])
ylabel(s.Name)

You could create a function to perform these steps for you. Other programs
using the structure s would need to create their own functions or access the
one you created.

Using Specialized Objects

Compare the structure array above to an object that has been specifically
designed to contain and manipulate time series data. For example, the
following statement creates a MATLAB timeseries object. It is initialized
to store the same data as the structure s above:

tsobj = timeseries(rand(10,1),.01:.01:.1, 'Name', 'Datal’');

The function that creates the object tsobj, accepts sample data, sample
times, a property name/property value pair (Name/Data1l), and uses a default
value of Units (which is seconds).

The designer of this object created a special version of the plot function that
works directly with this object. For example:

plot(tsobj)

General Purpose Vs. Specialized Arrays

Time Series Plot:Datal
1 T T

0.9

0.8

0.7+

0.6

0.5F

Datal

0.4r

0.3F

0.2

0.1

0 L L L L
0 0.02 0.04 0.06 0.08 0.1

Time (seconds)

Notice how the object’s plot function creates a graph that is plotted and
labeled with the data from the tsobj object. As a user of this object, you do
not need write your own code to produce this graph. The class design specifies
the standard way to present graphs of timeseries data and all clients of this
object use the same code for plotting.

See “Time Series Objects” for more on using MATLAB timeseries objects.

5-7

5 Using Objects

Key Object Concepts

In this section...

“Basic Concepts” on page 5-8
“Classes Describe How to Create Objects” on page 5-8

“Properties Contain Data” on page 5-8

“Methods Implement Operations” on page 5-9

Basic Concepts

There are some basic concepts that are fundamental to objects. Objects
represent something in the real world, like an error condition or the set

of data you collected in a product test. Objects enable you to do something
useful, like provide an error report or analyze and present the results of tests.

This section introduces the basic components that MATLAB uses to realize
the design of an object. These components include:

e (Classes
® Properties

e Methods

Classes Describe How to Create Obijects

A class defines a set of similar objects. It is a description from which MATLAB
creates a particular instance of the class, and it is the instance (that is, the
object) that contains actual data. Therefore, while there is a timeseries
class, you work with timeseries objects.

Classes are defined in code files — either as separate .m files or built-in to the
MATLAB executable. Objects are specific representations of a class that you
access through workspace variables.

Properties Contain Data

Objects store data in properties. Consider a timeseries object as an example.
timeseries object properties contains time series data, corresponding time

Key Object Concepts

values, and related information, such as units, events, data quality, and
interpolation method. MATLAB objects enable you to access property data
directly (see “Accessing Object Data” on page 5-14 for information on property
syntax).

Properties are sometimes called fields in other programming languages and
are similar to the fields of MATLAB structures. Properties have descriptive
names, such as Data and DatalInfo, in the case of timeseries objects, and
can contain any kind of MATLAB data, including other objects.

An object, then, is a container for a predefined set of data. Unlike a cell array
or structure, you cannot add new properties or delete defined properties
from an object. Doing so would compromise the object’s intended purpose
and violate the class design.

The class design can restrict the values you can assign to a property. For
example, a Length property might restrict possible values to positive integers
or might be read only and determine its own value when queried.

Methods Implement Operations

Class methods are functions designed to work with objects of a particular
class. Methods enable the class designer to implement specific operations that
are optimized for the data contained in the object. You do not have to extract
the data from the object, modify its format, and pass it to a general-purpose
MATLAB function because the class defines methods with an awareness of
the object’s structure.

Methods can define operations that are unique to a particular class of object,
such as adding a data sample to an existing set of time series data, or can
overload common operations in a way that makes sense for the particular
object. For example, timeseries objects have an addsample method to add
a new data sample to an existing timeseries object. Also, timeseries
overloads the MATLAB plot function to work with timeseries objects.

MATLAB software determines which overloaded version of a method to call

based on the class of the object passed as an argument. If you execute a
MATLAB statement like:

tsobjnew = tsobj1 + tsobj2;

5-9

5 Using Objects

5-10

where tsobj1 and tsobj2 are timeseries objects, MATLAB calls the
timeseries version of the + operation (if defined) and returns a new
timeseries object.

Because the timeseries class defines the operation, you can add a
timeseries object to a scalar number:

tsobjnew = tsobj1 + 4;

The class definition determines what happens when you add a scalar double
to a timeseries object (the scalar is added to each Data value).

Methods make working with objects convenient for the user, but also provide
advantages to the class designer. Methods hide implementation details from
users—you do not need to create your own functions to access and manipulate
data, as you would when using general-purpose data structures like structs
and cell arrays. This provides the flexibility to change the internal design

of an object without affecting object clients (i.e., application programs that
use the objects).

Creating Obijects

Creating Objects

In this section...

“Class Constructor” on page 5-11

“When to Use Package Names” on page 5-11

Class Constructor

Usually, you create an object by calling a function designed for the purpose of
creating that specific class of object. For example, the following code creates a
timeseries object and assigns it to the variable tsboj:

load count.dat % Load some data
tsobj = timeseries(count(:,1),1:24, 'Name', 'Datal');

The timeseries method creates an object and initializes its data with the
values specified as arguments. Classes that create objects define a special
method whose purpose is to create objects of the class. This function has the
same name as the class and is called the class constructor.

However, in some cases, you might create objects by calling other functions or
even using a GUI. For example, a try-catch block can return an MException
object that contains information about a specific error condition. In this case,
you do not explicitly create the object, rather it is returned by the catch
statement (see “Accessing Object Data” on page 5-14 for an example).

When to Use Package Names

A package is a container that provides a logical grouping for class and function
definitions. The class and function names within a given package must be
unique, but can be reused in other packages. Packages are folders that begin
with the + character.

If a package folder contains a class definition, then you must use the package
name when calling the class constructor. For example, this statement creates
a Map object, whose class definition file is in a folder in the containers
package:

mapobj = containers.Map({'rose', 'bicycle'},{ ' flower', 'machine'});

5-11

5 Using Objects

5-12

You need to use the package name to refer to:

¢ (lass constructors (e.g., containers.Map), which you call to create an object

e Static methods (methods that do not require an object of the class as an
argument)

¢ Package functions (functions defined in the package)

However, because MATLAB uses the class of an object to determine which
ordinary method to call, you do not need to use the package name in
conjunction with object references. For example, suppose you have the
following folder structure:

pathfolder/+packagename/@ClassName/ClassName.m
pathfolder/+packagename/@ClassName/staticMethodName.m
pathfolder/+packagename/functionName.m

In the following examples, obj is the object you are creating.

% Create object of ClassName
obj = packagename.ClassName(...);

% Call methodName
obj.methodName(...);

% Set or get the value of property PropertyName
obj.PropertyName = X;
X = obj.PropertyName;

% Call static method staticMethodName
packagename .ClassName .staticMethodName(...);

% Call package function functionName
packagename . functionName(...)

If a package folder contains a class definition file, then consider the package
name as part of the class name. Wherever you need to use the class name,
include the package name. For example, containers.Map is the full class
name of the Map class.

Creating Obijects

See the object’s user documentation for the syntax you need to use to create
objects.

See “Organizing Classes in Folders” and “Scoping Classes with Packages” for
more information on the use of packages.

See “Importing Classes” for information on importing packages into functions.

5-13

5 Using Objects

5-14

Accessing Object Data

In this section...

“Listing Public Properties” on page 5-14
“Getting Property Values” on page 5-14
“Setting Property Values” on page 5-15

Listing Public Properties

Note You should always treat property names as being case sensitive.

You can see the names of all public object properties using the properties
function with the object’s class name or with an actual object. For example:

>> properties('MException')
Properties for class MException:
identifier
message
cause
stack

Getting Property Values

After creating an object, you can access the values of its properties:

try
a = rand(4);
a(17) = 7;
catch me % catch creates an MException object named me
disp(['Current error identifier: ' me.identifier])
end

Current error identifier: MATLAB:indexed_matrix_cannot_be_resized

Access the data in properties using dot notation:

object.PropertyName

Accessing Object Data

For example, you can access the message property of the MException object,
me, with this syntax:

>> me.message
ans =
In an assignment A(I) = B, a matrix A cannot be resized.

See “Capturing Information About the Error” on page 6-5 for more information
on using MException objects.

Setting Property Values

Objects often restrict what values you can assign to them. For example, the
following timeseries object has 10 data values, each corresponding to a
sample time:

tsobj = timeseries(rand(10,1),1:10, 'Name', 'Random Sample');

Now suppose you attempt to set the Data property to a three-element vector:

>> tsobj.Data = [1 2 3];
??? Error using ==> timeseries.timeseries>timeseries.set.Data at 171
Size of the data array is incompatible with the time vector.

The timeseries class design ensures that the number of data samples
matches the number of time samples. This illustrates one of the advantages a
specialized object has over a general purpose-data structure like a MATLAB
struct.

5-15

5 Using Objects

Calling Object Methods

5-16

In this section...

“What Operations Can You Perform” on page 5-16
“Method Syntax” on page 5-16
“Class of Objects Returned by Methods” on page 5-18

What Operations Can You Perform

Methods define all aspects of an object’s behavior. Consequently, most classes
implement many methods that an object user is unlikely to call directly. The
user documentation for the object you are using describes the operations you
can perform on any particular object.

You can list the methods defined by a class with the methods or methodsview
functions:

methods('timeseries’)

Methods for class timeseries:

addevent gettsbetweenevents set

addsample horzcat setabstime
createTstoolNode idealfilter setinterpmethod
ctranspose init setprop
gettsatevent pvset var
gettsbeforeatevent rdivide vertcat
gettsbeforeevent resample

Static methods:
tsChkTime tsgetrelativetime

Method Syntax

You call an object’s method using dot notation:

returnedValue = object.MethodName(args,...)

Calling Object Methods

You also can call a method using function syntax, passing the object as the
first (left-most) argument.

For example, MException objects have a getReport method that returns
information about the error.

try
surf
catch me
disp(me.getReport)
end

Error using ==> surf at 50
Not enough input arguments.

Dot and function notation are usually equivalent. That is, both of the
following statements return the MException report:

rpt
rpt

getReport(me); %
me.getReport; %

all getReport using function notation

C
Call getReport using dot notation

Calling the Correct Method

It is possible for the function syntax to call an unexpected method if there is
more than one object in the argument list. Suppose there are two classes,
ClassA and ClassB, that define a method called addData. Suppose further
that ClassA is defined as being inferior to ClassB in precedence (something
that the class designer can do in the class definition). In this situation, given
objA is of ClassA and objB is of ClassB, the following two statement call
different methods:

addData(objA,objB) % Calls objB.addData
objA.addData(objB) % Calls objA.addData

If ClassA and ClassB had equal precedence, then the left-most argument
determines which method MATLAB calls (i.e., objA.addData in both
statements).

It is unlikely that you will encounter this particular scenario, however, if you
are calling a method that accepts more than one object as arguments, using

5-17

5 Using Objects

5-18

dot notation removes any ambiguity about which object’s method MATLAB
calls.

Class of Objects Returned by Methods

While methods sometimes return objects of the same class, this is not always
the case. For example, the MException object’s getReport returns a character
string:

try
surf
catch me
rpt = me.getReport;
end
whos
Name Size Bytes Class Attributes
me 1x1 780 MException
rpt 1x171 342 char

Methods can return any type of value and properties can contain any type of
value. However, class constructor methods always return an object or array of
objects of the same type as the class.

Desktop Tools Are Object Aware

Desktop Tools Are Object Aware

In this section...
“Tab Completion Works with Objects” on page 5-19
“Editing Objects with the Variable Editor” on page 5-19

Tab Completion Works with Objects

MATLAB tab completion works with objects. For example, if you enter an
object name followed by a dot:

tsobj.

and then press the tab key, MATLAB pops up a selection box with a list of
properties and methods:

File Edit Debug createTstoolNode

:c::l _’::: :‘::' ctranspose (7) ||H:'I,

- Data

. Shortcuks (2] HY e

@ Mew ko MATLAR d=]1ewvent 1 Getting Started.

>> tsobd delsample

f% =» tsobj.

*101:.1], 'Ham=', 'Datal') ;

The more letters you complete after the dot, the more specific is the list. See
“Completing Statements in the Command Window — Tab Completion” for
more information.

Editing Objects with the Variable Editor

You can use the MATLAB Variable Editor to edit object properties. To open
an object in the Variable Editor, you can double-click the object name in the
Workspace browser or use the openvar command:

5-19

5 Using Objects

tsobj = timeseries(rand(10,1),.01:.01:.1, 'Name', 'Datal’');
openvar tsobj

See “Viewing and Editing Workspace Variables with the Variable Editor”
for more information.

5-20

Getting Information About Objects

Getting Information About Objects

In this section...

“The Class of Workspace Variables” on page 5-21
“Information About Class Members” on page 5-23
“Logical Tests for Objects” on page 5-23
“Displaying Objects” on page 5-24

“Getting Help for MATLAB Objects” on page 5-25

The Class of Workspace Variables

Knowing the class of the variables you are working with enables you to use
them most effectively. For example, consider the following variable created in
your workspace:

load count.dat % Load some data
tsobj = timeseries(count(:,1),1:24, 'Name', 'Datal');

>> whos
Name Size Bytes Class
count 24x3 576 double
tsobj 24x1 261 timeseries

The whos command lists information about your workspace variables. Notice
that the variable loaded from the count.dat file (count) is an array of
doubles. You know, therefore, that you can perform indexing and arithmetic
operations on this array. For example:

newcount = sum(count,2);
newcount(8:15) = NaN;
bar (newcount)

Indexed assignment and the bar function work with inputs of class double.

5-21

5 Using Objects

600

500 J

400} i

300 1

200 1

100 J

However, the timeseries class does not define a bar method for timeseries
objects. The timeseries class defines a plot method for graphing because the
class design specified a line plot as the best way to represent time series data.

Extracting Data From Object Properties

Suppose you have a timeseries object and you want to work directly with the
numeric values of the timeseries data. You can extract data from the object
properties and assign these values to an array. For example

load count

tsobj = timeseries(sum(count,2),1:24, 'Name', 'DataSum');
d = tsobj.Data;

t tsobj.Time;

n = tsojb.Name;

d(8:15) = NaN;

bar(t,d); title(n)

Testing for the Class of an Object

Suppose you create a function that operates on more than one class of object.
If you have a timeseries object, you call the timeseries plot method, but

5-22

Getting Information About Objects

if the object is of class double, you can call the bar function (which isn’t
supported by timeseries objects). You could use isa as in the following code
to make this determination:

if isa(obj, 'timeseries')
plot(obj)

elseif isa(obj, 'double')
bar(obj)

end

Information About Class Members
These functions provide information about the object.

Function Purpose

class Return class of object

events List of event names defined by the class

methods List of methods implemented by the class
methodsview Information on class methods in separate window
properties List of class property names

Logical Tests for Objects

In functions, you might need conditional statements to determine the status of
an object before performing certain actions. For example, you might perform

different actions based on the class of an object (see “Testing for the Class of an
Object” on page 5-22). The following functions provide logical tests for objects:

Function Purpose

isa Determine whether argument belongs to a particular
class. True for object’s class and all of object’s
superclasses.

isequal Determine if two objects are equal.

isobject Determine whether the input is a MATLAB object.

5-23

5 Using Objects

5-24

Testing for Object Equality

isequal finds two objects to be equal if all the following conditions are met:

* Both objects are of the same class

® Both objects are of the same size

e All corresponding property values are equal

isequal tests the value of every array element in every property and every
property of every object contained in the objects being tested. As contained

objects are tested for equality, MATLAB calls each object’s own version of
isequal (if such versions exist).

If objects contain large amounts of data stored in other objects, then testing
for equality can be a time-consuming process.

Identifying MATLAB Objects

The isobject function returns true only for MATLAB objects. For Sun Java
objects, use isjava. For Handle Graphics objects, use ishandle.

Note ishandle returns false for MATLAB handle objects. See “Testing for
Handle or Value Class” on page 5-30 for more information.

Displaying Objects

When you issue commands that return objects and do not terminate those
commands with a semicolon, or when you pass an object to the disp function,
MATLAB displays information about the object. For example:

hobj = containers.Map({'Red Sox', 'Yankees'},
{'Boston', 'New York'})
hobj =
containers.Map handle
Package: containers
Properties:
Count: 2
KeyType: 'char'
ValueType: 'char'

Getting Information About Objects

Methods, Events, Superclasses

This information includes links (shown in blue) to documentation on the
object’s class and superclasses, and lists of methods, events, and superclasses.
Properties and their current values are also listed.

Some classes (timeseries, for example) redefine how they display objects to
provide more useful information for this particular class.

Getting Help for MATLAB Obijects

You can get documentation for MATLAB objects using the doc command
with the class name. To see the reference pages for the objects used in this
chapter, use the following commands:

doc timeseries
doc MException
doc containers.Map % Include the package name

5-25

5 Using Objects

Copying Obijects

5-26

In this section...

“Two Copy Behaviors” on page 5-26
“Value Object Copy Behavior” on page 5-26
“Handle Object Copy Behavior” on page 5-27

“Testing for Handle or Value Class” on page 5-30

Two Copy Behaviors
There are two fundamental kinds of MATLAB classes—handles and values.

Value classes create objects that behave like ordinary MATLAB variables
with respect to copy operations. Copies are independent values. Operations
that you perform on one object do not affect copies of that object.

Handle classes create objects that are sometimes referred to as references.
This is because a handle, and all copies of this handle, refer to the same
underlying object. When you create a handle object, you can copy the handle,
but not the data referenced by the object’s properties. Any operations you
perform on a handle object affects all copies of that object. Handle Graphics
objects behave in this way.

More Information About Handle and Value Classes

For more detailed information about handle and value classes, see “Value
or Handle Class — Which to Use” in the Object-Oriented Programming
documentation.

Value Object Copy Behavior

MATLAB numeric variables exhibit the behavior of value objects. For
example, when you copy a to the variable b, both variables are independent of
each other. Changing the value of a does not change the value of b:

a = 8;
b = aj;

Copying Obijects

Now reassign a and b is unchanged:

a = 6;

(o

8

Clearing a does not affect b:

clear a
b
b:

Value Obiject Properties

The copy behavior of values stored as properties in value objects is the same.
For example, suppose vobj1 is a value object with property a:

vobji.a = 8; % Property is set to a value

If you copy vobj1 to vobj2, and then change the value of vobj1 property a, you
can see that the value of the copied object’s property vobj2.a is unaffected:

vobj2 =vobji;
vobji.a = 5;

vobj2.a
ans =
8

Handle Object Copy Behavior

Suppose you have a handle class called HdClass that defines a property called
Data, and that you create an object of this class with the following statement:

hobj1 = HdClass(8)

Because this statement is not terminated with a semicolon, MATLAB displays
information about the object:

hobj1 =

5-27

5 Using Objects

HdClass handle
Properties:
Data: 8

The variable hobj1 is a handle that references the object created. Copying
hobj1 to hobj2 results in another handle (the variable hobj2) referring to
the same object:

hobj2 = hobj1
hobj2
HdClass handle
Properties:
Data: 8

Because handle objects reference the data contained in their properties,
copying an object copies the handle to a new variable name, but the properties
still refer to the same data. For example, given that hobj1 is a handle object
with property Data:

hobj1.Data
ans =
8

When you change the value of hobj1’s Data property, the value of the copied
object’s Data property also changes:

hobj1.Data = 5;

hobj2.Data
ans =
5

Because hobj2 and hobj1 are handles to the same object, changing the copy,
hobj2, also changes the data you access through handle hobj1:

hobj2.Data = 17;
hobj1.Data
ans =

17

5-28

Copying Obijects

Reassigning Handle Variables

Reassigning a handle variable produces the same result as reassigning any
MATLAB variable. When you create a new object and assign it to hobj1:

hobj1 = HdClass(3.14);

hobj1 references the new object, not the same object referenced previously
(and still referenced by hobj2).

Clearing Handle Variables

When you clear a handle from the workspace, MATLAB removes the
variable, but does not removed the object referenced by the handle. Therefore,
given hobj1 and hobj2, which both reference the same object, you can clear
either handle without affecting the object:

hobj1.Data = 2"8;
clear hobj1
hobj2
hobj2 =
HdClass handle
Properties:
Data: 256

If you clear both hobj1 and hobj2, then there are no references to the object
and MATLAB deletes the object and frees the memory used by that object.

Deleting Handle Obijects

To remove an object referenced by any number of handles, you delete the
object. Given hobj1 and hobj2, which both reference the same object, if you
delete either handle, MATLAB deletes the object:

hobj1 HdClass(8);
hobj2 = hobj1;
delete(hobj1)
hobj2
hobj2 =

deleted HdClass handle

5-29

5 Using Objects

5-30

See “Destroying Objects” on page 5-31 for more information about object
lifecycle.

Testing for Handle or Value Class

If you are writing MATLAB programs that copy objects, you might need to
determine if any given object is a handle or value. To determine if an object is
a handle object, use the isa function:

isa(obj, 'handle")
For example, the containers.Map class creates a handle object:

hobj = containers.Map({'Red Sox', 'Yankees'}, {'Boston','New York'});
isa(hobj, 'handle")
ans =

1

hobj is also a containers.Map object:

isa(hobj, 'containers.Map"')
ans =
1

If you query the class of hobj, you see that it is a containers.Map object:

class(hobj)
ans =
containers.Map

The class function returns the specific class of an object, whereas isa
returns true for any of the object’s superclasses as well. This behavior is
consistent with the object-oriented concept that an object is a member of all its
superclasses. Therefore, it is true that a containers.Map object is a handle
object and a containers.Map object.

There is no equivalent test for value classes because there is no value base
class. If an object is a value object, isa(object, 'handle') returns false
(i.e., logical 0).

See “Map Containers” on page 1-150 for more information on the
containers.Map class.

Destroying Objects

Destroying Objects

In this section...

“Object Lifecycle” on page 5-31

“Difference Between clear and delete” on page 5-31

Obiject Lifecycle

An object’s lifecycle ends when you reassign a new value to that variable,
when it is no longer used in a function, or when function execution ends.
MATLAB handle classes have a special method called delete that MATLAB
calls when a handle object lifecycle ends.

Calling delete on an object explicitly makes all copies of a handle object
invalid because it destroys the data associated with the object and frees
memory used by deleted objects. MATLAB calls delete automatically so it is
not necessary for you to do so. Classes can redefine the handle class delete
method to perform other cleanup operations, like closing files or saving data.

Deleting a handle object renders all copies invalid:

delete(hobj1)
hobj2.a
??? Invalid or deleted object.

Difference Between clear and delete

The handle class delete method removes the handle object, but does not
clear the variable name. The clear function removes a variable name, but
does not remove the values to which the variable refers. For example, if you
have two variables that refer to the same handle object, you can clear either
one without affecting the actual object:

hobj = containers.Map({'Red Sox', 'Yankees'}, {'Boston','New York'});
hobj_copy = hobj;

clear hobj

city = hobj_copy('Red Sox"')

city =

Boston

5-31

5 Using Objects

If you call clear on all handle variables that refer to the same handle object,
then you have lost access to the object and MATLAB destroys the object. That
1s, when there are no references to an object, the object ceases to exist.

You can only call clear on value objects. MATLAB does not automatically
call a value class delete method.

5-32

Error Handling

¢ “Error Reporting in a MATLAB Application” on page 6-2
e “Capturing Information About the Error” on page 6-5

¢ “Throwing an Exception” on page 6-16

¢ “Responding to an Exception” on page 6-17

¢ “Warnings” on page 6-22

¢ “Warning Control” on page 6-24

¢ “Debugging Errors and Warnings” on page 6-35

6 tror Handling

Error Reporting in a MATLAB Application

In this section...

“Overview” on page 6-2
“Getting an Exception at the Command Line” on page 6-2

“Getting an Exception in Your Program Code” on page 6-3

“Generating a New Exception” on page 6-4

Overview

No matter how carefully you plan and test the programs you write, they
may not always run as smoothly as expected when executed under different
conditions. It is always a good idea to include error checking in programs to
ensure reliable operation under all conditions.

In the MATLAB software, you can decide how your programs respond

to different types of errors. You may want to prompt the user for more
input, display extended error or warning information, or perhaps repeat a
calculation using default values. The error-handling capabilities in MATLAB
help your programs check for particular error conditions and execute the
appropriate code depending on the situation.

When MATLAB detects a severe fault in the command or program it is
running, it collects information about what was happening at the time of the
error, displays a message to help the user understand what went wrong, and
terminates the command or program. This is called throwing an exception.
You can get an exception while entering commands at the MATLAB command
prompt or while executing your program code.

Getting an Exception at the Command Line

If you get an exception at the MATLAB prompt, you have several options on
how to deal with it as described below.

Determine the Fault from the Error Message

Evaluate the error message MATLAB has displayed. Most error messages
attempt to explain at least the immediate cause of the program failure. There

6-2

Error Reporting in a MATLAB® Application

1s often sufficient information to determine the cause and what you need to
do to remedy the situation.

Review the Failing Code

If the function in which the error occurred is implemented as a MATLAB
program file, the error message should include a line that looks something
like this:

surf

??? Error using ==> surf at 50

Mot enough input arguments.

The underlined text to the right names the function that threw the error
(surf, in this case) and shows the failing line number within that function’s
program file. Click the underlined text; MATLAB opens the file and positions
the cursor at the location in the file where the error originated. You may be
able to determine the cause of the error by examining this line and the code
that precedes it.

Step Through the Code in the Debugger

You can use the MATLAB Debugger to step through the failing code. Click
the underlined error text to open the file in the MATLAB Editor at or near the
point of the error. Next, click the hyphen at the beginning of that line to set a
breakpoint at that location. When you rerun your program, MATLAB pauses
execution at the breakpoint and enables you to step through the program code.
The command dbstop on error is also helpful in finding the point of error.

See the documentation on “Editing and Debugging MATLAB Code” for more
information.

Getting an Exception in Your Program Code

When you are writing your own program in a program file, you can catch
exceptions and attempt to handle or resolve them instead of allowing your
program to terminate. When you catch an exception, you interrupt the normal
termination process and enter a block of code that deals with the faulty
situation. This block of code is called a catch block.

6 tror Handling

6-4

Some of the things you might want to do in the catch block are:

e Examine information that has been captured about the error.

Gather further information to report to the user.

Try to accomplish the task at hand in some other way.

Clean up any unwanted side effects of the error.

When you reach the end of the catch block, you can either continue executing
the program, if possible, or terminate it.

The documentation on “Capturing Information About the Error” on page
6-5 describes how to acquire information about what caused the error, and
“Responding to an Exception” on page 6-17 presents some ideas on how to
respond to it.

Generating a New Exception

When your program code detects a condition that will either make the
program fail or yield unacceptable results, it should throw an exception. This
procedure

e Saves information about what went wrong and what code was executing at
the time of the error.

® Gathers any other pertinent information about the error.

¢ Instructs MATLAB to throw the exception.

The documentation on “Capturing Information About the Error” on page 6-5
describes how to use an MException object to capture information about the

error, and “Throwing an Exception” on page 6-16 explains how to initiate
the exception process.

Capturing Information About the Error

Capturing Information About the Error

In this section...

“Overview” on page 6-5

“The MException Class” on page 6-5

“Properties of the MException Class” on page 6-7
“Methods of the MException Class” on page 6-14

Overview

When the MATLAB software throws an exception, it captures information
about what caused the error in a data structure called an MException object.
This object is an instance of the MATLAB MException class. You can obtain
access to the MException object by catching the exception before your program
aborts and accessing the object constructed for this particular error via the
catch command. When throwing an exception in response to an error in
your own code, you will have to create a new MException object and store
information about the error in that object.

This section describes the MException class and objects constructed from
that class:

Information on how to use this class is presented in later sections on
“Responding to an Exception” on page 6-17 and “Throwing an Exception”
on page 6-16.

The MException Class

The figure shown below illustrates one possible configuration of an object of
the MException class. The object has four properties: identifier, message,
stack, and cause. Each of these properties is implemented as a field of
the structure that represents the MException object. The stack field is an
N-by-1 array of additional structures, each one identifying a function, and
line number from the call stack. The cause field is an M-by-1 cell array of
MException objects, each representing an exception that is related to the
current one.

6 tror Handling

See “Properties of the MException Class” on page 6-7 for a full description of
these properties.

MException
identifier|Object
message
stack I)
cause file file
namej||nhame
line line
MException
identifier| Object
| message
stack
cause
MExc_eption
identifier|Object
u message
stack I — I]
causepR |file file file file
name||name namej||hame
line line line line
MException
identifier| Object
|| message
stack .
cause file
name
line

Object Constructor

Any code that detects an error and throws an exception must also construct
an MException object in which to record and transfer information about the
error. The syntax of the MException constructor is

ME = MException(identifier, message)

6-6

Capturing Information About the Error

where identifier is a MATLAB message identifier of the form

component:mnemonic

that is enclosed in single quotes, and message is a text string, also enclosed
in single quotes, that describes the error. The output ME is the resulting
MException object.

If you are responding to an exception rather than throwing one, you do
not have to construct an MException object. The object has already been
constructed and populated by the code that originally detected the error.

Properties of the MException Class

The MException class has four properties. Each of these properties is
implemented as a field of the structure that represents the MException object.
Each of these properties is described in the sections below and referenced in
the sections on “Responding to an Exception” on page 6-17 and “Throwing an
Exception” on page 6-16. All are read-only; their values cannot be changed.

The MException properties are:

® jdentifier
® message
® stack

® cause

Repeating the surf example shown above, but this time catching the

exception, you can see the four properties of the MException object structure.
(This example uses try-catch in an atypical fashion. See the section on “The
try-catch Statement” on page 6-17 for more information on using try-catch).

try
surf
catch ME
ME
end

6 tror Handling

Run this at the command line and MATLAB returns the contents of the
MException object:

ME =
MException object with properties:

identifier: 'MATLAB:nargchk:notEnoughInputs'
message: 'Not enough input arguments.'
stack: [1x1 struct]
cause: {}

The stack field shows the filename, function, and line number where the
exception was thrown:

ME.stack

ans =
file: 'matlabroot\toolbox\matlab\graph3d\surf.m'
name: ‘'surf'
line: 54

The cause field is empty in this case. Each field is described in more detail
in the sections that follow.

Message Identifiers

A message identifier is a tag that you attach to an error or warning statement
that makes that error or warning uniquely recognizable by MATLAB. You can
use message identifiers with error reporting to better identify the source of
an error, or with warnings to control any selected subset of the warnings in
your programs.

The message identifier is a read-only character string that specifies a
component and a mnemonic label for an error or warning. The format of
a simple identifier is

component:mnemonic

A colon separates the two parts of the identifier: component and mnemonic.
If the identifier uses more than one mnemonic, then additional colons are
required to separate them. A message identifier must always contain at
least one colon.

6-8

Capturing Information About the Error

Some examples of message identifiers are

MATLAB: rmpath:DirNotFound
MATLAB:odearguments:InconsistentDataType
Simulink:actionNotTaken
TechCorp:0penFile:notFoundInPath

Both the component and mnemonic fields must adhere to the following syntax
rules:

* No white space (space or tab characters) is allowed anywhere in the
identifier.

¢ The first character must be alphabetic, either uppercase or lowercase.

® The remaining characters can be alphanumeric or an underscore.

There is no length limitation to either the component or mnemonic. The
identifier can also be an empty string.

Component Field. The component field specifies a broad category under
which various errors and warnings can be generated. Common components
are a particular product or toolbox name, such as MATLAB or Control, or
perhaps the name of your company, such as TechCorp in the preceding
example.

You can also use this field to specify a multilevel component. The following
statement has a three-level component followed by a mnemonic label:

TechCorp:TestEquipDiv:Waveform:obsoleteSyntax

The component field enables you to guarantee the uniqueness of each
identifier. Thus, while the internal MATLAB code might use a certain
warning identifier like MATLAB: InconsistentDataType, that does not
preclude you from using the same mnemonic, as long as you precede it with
a unique component. For example,

warning('TechCorp:InconsistentDataType',
'Value %s is inconsistent with existing properties.'
sprocketDiam)

6-9

6 tror Handling

6-10

Mnemonic Field. The mnemonic field is a string normally used as a tag
relating to the particular message. For example, when reporting an error
resulting from the use of ambiguous syntax, a simple component and
mnemonic such as the following might be appropriate:

MATLAB:ambiguousSyntax

Message Identifiers in an MException Object. When throwing an
exception, create an appropriate identifier and save it to the MException
object at the time you construct the object using the syntax

ME = MException(identifier, string)

For example,

ME = MException('AcctError:NoClient',
‘Client name not recognized.');

ME.identifier
ans =
AcctError:NoClient

When responding to an exception, you can extract the message identifier from
the MException object as shown here. Using the surf example again,

try

surf
catch ME

id = ME.identifier
end

id =
MATLAB:nargchk:notEnoughInputs

Text of the Error Message

An error message in MATLAB is a read-only character string issued by the
program code and returned in the MException object. This message can assist
the user in determining the cause, and possibly the remedy, of the failure.

Capturing Information About the Error

When throwing an exception, compose an appropriate error message and
save 1t to the MException object at the time you construct the object using
the syntax

ME = MException(identifier, string)

If your message string requires formatting specifications, like those available
with the sprintf function, use this syntax for the MException constructor:

ME = MException(identifier, formatstring, argi, arg2, ...)

For example,

S = 'Accounts'; f1 = 'ClientName’;
ME = MException('AcctError:Incomplete’,
'Field ''%s.%s'' is not defined.', S, f1);
ME.message
ans =

Field 'Accounts.ClientName' is not defined.

When responding to an exception, you can extract the error message from the
MException object as follows:

try

surf
catch ME

msg = ME.message
end

msg =
Not enough input arguments.

The Call Stack

The stack field of the MException object identifies the line number,
function, and filename where the error was detected. If the error occurs in

a called function, as in the following example, the stack field contains the
line number, function name, and filename not only for the location of the
immediate error, but also for each of the calling functions. In this case, stack

6-11

6 tror Handling

6-12

1s an N-by-1 array, where N represents the depth of the call stack. That is, the
stack field displays the function name and line number where the exception
occurred, the name and line number of the caller, the caller’s caller, etc.,
until the top-most function is reached.

When throwing an exception, MATLAB stores call stack information in the
stack field. You cannot write to this field; access is read-only.

For example, suppose you have three functions that reside in two separate
files:

mfileA.m

42 function A1(Xx, V)
43 B1(x, V);

mfileB.m

8 function B1(x, y)
9 B2(x, y)

26 function B2(x, y)

27

28

29

30 .

31 % Throw exception here

Catch the exception in variable ME and then examine the stack field:

for k=1:length(ME.stack)
ME.stack (k)
end

Capturing Information About the Error

ans =
file: 'C:\matlab\test\mfileB.m'
name: 'B2'
line: 31

ans =
file: 'C:\matlab\test\mfileB.m'
name: 'B1'
line: 9

ans =
file: 'C:\matlab\test\mfileA.m'
name: 'Al'
line: 43

The Cause Array

In some situations, it can be important to record information about not only
the one command that caused execution to stop, but also other exceptions that
your code caught. You can save these additional MException objects in the
cause field of the primary exception.

The cause field of an MException is an optional cell array of related
MException objects. You must use the following syntax when adding objects
to the cause cell array:

primaryException = addCause(primaryException, secondaryException)

This example attempts to assign an array D to variable X. If the D array

does not exist, the code attempts to load it from a MAT-file and then retries
assigning it to X. If the load fails, a new MException object (ME3) is constructed
to store the cause of the first two errors (ME1 and ME2):

try
X = D(1:25)
catch ME1
try
filename = 'test200';
load(filename);
X = D(1:25)
catch ME2
ME3 = MException('MATLAB:LoadErr',

6-13

6 tror Handling

'Unable to load from file %s', filename);
addCause (ME3, ME1);
addCause (ME3, ME2);

ME3
ME3

end
end

There are two exceptions in the cause field of ME3:

ME3.cause

ans =
[1x1 MException]
[1x1 MException]

Examine the cause field of ME3 to see the related errors:

ME3.cause{:}
ans =

MException object with properties:

identifier: 'MATLAB:UndefinedFunction'

message: 'Undefined function or method 'D' for input
arguments of type 'double’.’
stack: [0x1 struct]
cause: {}
ans =

MException object with properties:

identifier: 'MATLAB:load:couldNotReadFile'

message: 'Unable to read file test204: No such file or
directory.'

stack: [0x1 struct]
cause: {}

Methods of the MException Class

There are ten methods that you can use with the MException class. The

names of these methods are case-sensitive. See the MATLAB function
reference pages for more information.

6-14

Capturing Information About the Error

Method Name

Description

addCause Append an MException to the cause
field of another MException.

disp Display an MException object.

eq Compare MException objects for
equality.

getReport Return a formatted message based on
the current exception.

isequal Compare MException objects for
equality.

last Return the last uncaught exception.
This is a static method.

ne Compare MException objects for
inequality.

rethrow Reissue an exception that has previously
been caught.

throw Issue an exception.

throwAsCaller Issue an exception, but omit the current

stack frame from the stack field.

6-15

6 tror Handling

Throwing an Exception

6-16

When your program detects a fault that will keep it from completing as
expected or will generate erroneous results, you should halt further execution
and report the error by throwing an exception. The basic steps to take are

¢ Detect the error. This is often done with some type of conditional statement,

such as an if statement that checks the output of the current operation.

Construct an MException object to represent the error. Add a message
identifier string and error message string to the object when calling the
constructor.

If there are other exceptions that may have contributed to the current error,
you can store the MException object for each in the cause field of a single
MException that you intend to throw. Use the addCause method for this.

Use the throw or throwAsCaller function to have the MATLAB software
issue the exception. At this point, MATLAB stores call stack information in
the stack field of the MException, exits the currently running function,
and returns control to either the keyboard or an enclosing catch block in a
calling function.

Responding to an Exception

Responding to an Exception

In this section...

“Overview” on page 6-17
“The try-catch Statement” on page 6-17

“Suggestions on How to Handle an Exception” on page 6-19

Overview

As stated earlier, the MATLAB software, by default, terminates the currently
running program when an exception is thrown. If you catch the exception in
your program, however, you can capture information about what went wrong,
and deal with the situation in a way that is appropriate for the particular
condition. This requires a try-catch statement.

This section covers the following topics:

The try-catch Statement

When you have statements in your code that could generate undesirable
results, put those statements into a try-catch block that catches any errors
and handles them appropriately.

A try-catch statement looks something like the following pseudocode. It
consists of two parts:

® A try block that includes all lines between the try and catch statements.

e A catch block that includes all lines of code between the catch and end
statements.

try
Perform one
or more operations
A catch ME
Examine error info in exception object ME
Attempt to figure out what went wrong
Either attempt to recover, or clean up and abort

6-17

6 tror Handling

6-18

end
B Program continues

The program executes the statements in the try block. If it encounters an
error, it skips any remaining statements in the try block and jumps to the
start of the catch block (shown here as point A). If all operations in the try
block succeed, then execution skips the catch block entirely and goes to the
first line following the end statement (point B).

Specifying the try, catch, and end commands and also the code of the try
and catch blocks on separate lines is recommended. If you combine any of
these components on the same line, separate them with commas:

try, surf, catch ME, ME.stack, end

ans =
file: 'matlabroot\toolbox\matlab\graph3d\surf.m'
name: 'surf'
line: 54

Note You cannot define nested functions within a try or catch block.

The Try Block

On execution, your code enters the try block and executes each statement as
if it were part of the regular program. If no errors are encountered, MATLAB
skips the catch block entirely and continues execution following the end
statement. If any of the try statements fail, MATLAB immediately exits
the try block, leaving any remaining statements in that block unexecuted,
and enters the catch block.

The Catch Block

The catch command marks the start of a catch block and provides access to a
data structure that contains information about what caused the exception.
This is shown as the variable ME in the preceding pseudocode. This data
structure is an object of the MATLAB MException class. When an exception
occurs, MATLAB constructs an instance of this class and returns it in the
catch statement that handles that error.

Responding to an Exception

You are not required to specify any argument with the catch statement.
If you do not need any of the information or methods provided by the
MException object, just specify the catch keyword alone.

The MException object is constructed by internal code in the program that
fails. The object has properties that contain information about the error
that can be useful in determining what happened and how to proceed. The
MException object also provides access to methods that enable you to respond
to the exception. See the section on“The MException Class” on page 6-5 to
find out more about the MException class.

Having entered the catch block, MATLAB executes the statements in
sequence. These statements can attempt to

* Attempt to resolve the error.
e (Capture more information about the error.

® Switch on information found in the MException object and respond
appropriately.

® (Clean up the environment that was left by the failing code.

The catch block often ends with a rethrow command. The rethrow causes
MATLAB to exit the current function, keeping the call stack information as it
was when the exception was first thrown. If this function is at the highest
level, that is, it was not called by another function, the program terminates. If
the failing function was called by another function, it returns to that function.
Program execution continues to return to higher level functions, unless any
of these calls were made within a higher-level try block, in which case the
program executes the respective catch block.

More information about the MException class is provided in the section
“Capturing Information About the Error” on page 6-5.

Suggestions on How to Handle an Exception

The following example reads the contents of an image file. The try block
attempts to open and read the file. If either the open or read fails, the
program catches the resulting exception and saves the MException object in
the variable ME1.

6-19

6 tror Handling

6-20

The catch block in the example checks to see if the specified file could not be
found. If so, the program allows for the possibility that a common variation
of the filename extension (e.g., jpeg instead of jpg) was used by retrying
the operation with a modified extension. This is done using a try-catch
statement nested within the original try-catch.

function d_in = read_image(filename)
[path name ext] = fileparts(filename);
try
fid = fopen(filename, 'r');
d_in = fread(fid);
catch ME1
% Get last segment of the error message identifier.
idSeglLast = regexp(ME1.identifier, '(?<=:)\w+$', 'match');

% Did the read fail because the file could not be found?
if strcmp(idSegLast, 'InvalidFid') && ...
~exist(filename, 'file')

% Yes. Try modifying the filename extension.
switch ext

case '.jpg’ % Change jpg to jpeg

filename = strrep(filename, '.jpg', '.jpeg')
case '.jpeg’ % Change jpeg to jpg

filename = strrep(filename, '.jpeg', '.jpg')
case '.tif' % Change tif to tiff

filename = strrep(filename, '.tif', '.tiff')
case '.tiff' % Change tiff to tif

filename = strrep(filename, '.tiff', '.tif')
otherwise

fprintf('File %s not found\n', filename);
rethrow(ME1) ;
end

% Try again, with modifed filenames.
ry
fid = fopen(filename, 'r');
d_in = fread(fid);
catch ME2
fprintf('Unable to access file %s\n', filename);

~+

Responding to an Exception

ME2 = addCause(ME2, ME1);
rethrow(ME2)
end
end
end

This example illustrates some of the actions that you can take in response
to an exception:

¢ Compare the identifier field of the MException object against possible
causes of the error.

® Use a nested try-catch statement to retry the open and read operations
using a known variation of the filename extension.

¢ Display an appropriate message in the case that the file truly does not
exist and then rethrow the exception.

® Add the first MException object to the cause field of the second.
¢ Rethrow the exception. This stops program execution and displays the

error message.

Cleaning up any unwanted results of the error is also advisable. For example,
your program may have allocated a significant amount of memory that it
no longer needs.

6-21

6 tror Handling

6-22

Warnings

In this section...

“Reporting a Warning” on page 6-22
“Identifying the Cause” on page 6-23

Reporting a Warning

Like error, the warning function alerts the user of unexpected conditions
detected when running a program. However, warning does not halt the
execution of the program. It displays the specified warning message and
then continues.

Use warning in your code to generate a warning message during execution.
Specify the message string as the input argument to warning. For example,

warning('Input must be a string')

Warnings also differ from errors in that you can disable any warnings that
you do not want to see. You do this by invoking warning with certain control
parameters. See “Warning Control” on page 6-24 for more information.

Formatted Message Strings

The warning message string you specify can contain formatting conversion
characters, such as those used with the MATLAB sprintf function. Make
the warning string the first argument, and add any variables used by the
conversion as subsequent arguments.

warning('formatted _warningmsg', argl, arg2, ...)

For example, if your program cannot process a given parameter, you might
report a warning with

warning('Ambiguous parameter name, "%s".', param)

MATLAB converts special characters like %d and %s in the warning message
string only when you specify more than one input argument with warning.
See “Formatted Message Strings” on page 6-22 for information.

Warnings

Message Identifiers

Use a message identifier argument with warning to attach a unique tag to a
warning message. MATLAB uses this tag to better identify the source of a
warning. The first argument in this example is the message identifier.

warning('MATLAB:paramAmbiguous',
"Ambiguous parameter name, "%s".', param)

See “Warning Control Statements” on page 6-26 for more information on
how to use identifiers with warnings.

Identifying the Cause

The lastwarn function returns a string containing the last warning message
issued by MATLAB. Use this to enable your program to identify the cause
of a warning that has just been issued. To return the most recent warning
message to the variable warnmsg, type

warnmsg = lastwarn;

You can also change the text of the last warning message with a new message
or with an empty string as shown here:

lastwarn('newwarnmsg'); % Replace last warning with new string
lastwarn(''); % Replace last warning with empty string

6-23

6 tror Handling

Warning Control

6-24

In this section...

“Overview” on page 6-24

“Warning Statements” on page 6-25

“Warning Control Statements” on page 6-26
“Output from Control Statements” on page 6-28
“Saving and Restoring State” on page 6-31

“Backtrace and Verbose Modes” on page 6-32

Overview

The MATLAB software gives you the ability to control what happens when a
warning is encountered during program execution. Options that are available
include

* Display selected warnings.

¢ Ignore selected warnings.

® Stop in the debugger when a warning is invoked.

¢ Display the stack trace after a warning is invoked.

Depending on how you set your warning controls, you can have these actions

affect all warnings in your code, specific warnings that you select, or just
the most recently invoked warning.

Setting up this system of warning control involves several steps.

1 Start by determining the scope of the control you need for the warnings
generated by your code. Do you want the control operations to affect all the
warnings in your code at once, or do you want to be able to control certain
warnings separately?

2 If the latter is true, you will need to identify those warnings you want to
selectively control. This requires going through your code and attaching
unique message identifiers to each of those warnings. If, on the other

Warning Control

hand, you do not require that fine a granularity of control, the warning
statements in your code need no message identifiers.

3 When you are ready to run your programs, use the MATLAB warning
control statements to exercise the desired controls on all or selected
warnings. Include message identifiers in these control statements when
selecting specific warnings to act upon.

Warning Statements

The warning statements you put into your code must contain the string to

be displayed when the warning is incurred, and may also contain a message
identifier. If you are not planning to use warning control or if you do not need
to single out certain warnings for control, you need to specify only the message
string. Use the syntax shown in “Warnings” on page 6-22. Valid formats are

warning('warnmsg')
warning('formatted _warnmsg', argl, arg2, ...)

Attaching an Identifier to the Warning Statement

If you want to be able to apply control statements to specific warnings, you
need to include a message identifier in the warning statements you wish to
control. The message identifier must be the first argument in the statement.
Valid formats are

warning('msg_id', ‘'warnmsg')
warning('msg_id', 'formatted warnmsg', argl, arg2, ...)

See “Message Identifiers” on page 6-8 for information on how to specify the
msg_id argument.

Note When you specify more than one input argument with warning,
MATLAB treats the warnmsg string as if it were a formatted warnmsg. This
1s explained in “Formatted Message Strings” on page 6-22.

6-25

6 tror Handling

6-26

Warning Control Statements

Once you have the warning statements in your program file and are ready to
execute it, you tell MATLAB how to act on these warnings by issuing control
statements. These statements place the specified warning(s) into a desired
state and have the format

warning state msg_id

Control statements can return information on the state of selected warnings
if you assign the output to a variable, as shown below. See “Output from
Control Statements” on page 6-28.

s = warning('state', 'msg_id');
Warning States

There are three possible values for the state argument of a warning control
statement.

State Description

on Enable the display of selected warning message.
off Disable the display of selected warning message.
query Display the current state of selected warning.

Message Identifiers
In addition to the message identifiers already discussed, there are three other
identifiers that you can use in control statements only.

Identifier Description

msg_id string Set selected warning to the specified state.

all Set all warnings to the specified state.
last Set only the last displayed warning to the specified
state.

Warning Control

Note MATLAB starts up with all warnings enabled, except for those
displayed in response to the command, warning('query', 'all').

Retrieving a Message Identifier from a Warning. If you get a warning
and you would like to know what the message identifier is for that warning,
you can retrieve the identifier from the second output of the lastwarn
function. The following example generates a warning when it attempts to
concatenate two unlike integer types together:

warning on all;

A = [int8(150), int16(300)];
Warning: Concatenation with dominant (left-most) integer class
may overflow other operands on conversion to return class.

If you are already aware of the consequences of this command and do not
want to see this warning message displayed every time you run your program,
you can disable the warning message. To identify the warning to disable, use
the following commands to acquire the message identifier:

warnStruct = warning('query', 'last');

msgid_integerCat = warnStruct.identifier

msgid_integerCat =
MATLAB:concatenation:integerInteraction

Once you have the identifier, you can use it to disable this one particular
message:

warning('off', msgid_integerCat);
Try the command again
A

A =
127 127

[int8(150), int16(300)]

Turn the message back on again, if you need to, as shown here:

warning(‘'on', msgid_intcatwarn);

6-27

6 tror Handling

Enabling Selected Warnings. Enable just the actionNotTaken warning
from Simulink by first turning off all warnings and then setting just that
warning to on.

warning off all
warning on Simulink:actionNotTaken

Next, use query to determine the current state of all warnings. It
reports that you have set all warnings to off, with the exception of
Simulink:actionNotTaken

warning query all
The default warning state is 'off'. Warnings not set to the
default are

State Warning Identifier

on Simulink:actionNotTaken

Disabling the Most Recent Warning. Evaluating inv on zero displays a
warning message. Turn off the most recently invoked warning with warning
off last.

inv(0)
Warning: Matrix is singular to working precision.
ans =

Inf

warning off last

inv(0) % No warning is displayed this time
ans =
Inf

Output from Control Statements

The warning function, when used in a control statement, returns a MATLAB
structure array containing the previous state of the selected warning(s). Use
the following syntax to return this information in structure array s:

s = warning('state', 'msg_id');

6-28

Warning Control

You must type the command using the MATLAB function format; parentheses
and quotation marks are required.

Note MATLAB does not display warning output if you do not assign the
output to a variable.

The next example turns off InconsistentDataType warnings for the
MATLAB:odearguments component, and returns the identifier and previous
state in a 1-by-1 structure array.

MATLAB:odearguments:InconsistentDataType

(7]
I

warning('off', 'MATLAB:odearguments:InconsistentDataType')

identifier: 'MATLAB:odearguments:InconsistentDataType'
state: 'on'

You can use output variables with any type of warning control statement.
If you just want to collect the information but do not want to change state,
simply perform a query on the warning(s). MATLAB returns the current

state of those warnings selected by the message identifier.

s = warning('query', 'msg id');

If you want to change state, but save the former state so you can restore it
later, use the return structure array to save that state. The following example
does an implicit query, returning state information in s, and then turns on
all warnings.

s = warning('on', 'all');

See “Saving and Restoring State” on page 6-31, for more information on
restoring the former state of warnings.

Output Structure Array
Each element of the structure array returned by warning contains two fields.

6-29

6 tror Handling

6-30

Field Name Description

identifier Message identifier string, 'all’', or 'last'

state State of warning(s) prior to invoking this control
statement

If you query for the state of just one warning, using a message identifier or
'last' in the command, MATLAB returns a one-element structure array.
The identifier field contains the selected message identifier, and the state
field holds the current state of that warning:

s
S:
identifier: 'MATLAB:odearguments:InconsistentDataType'
state: 'on'

warning('query', 'last')

If you query for the state of all warnings, using 'all' in the command,
MATLAB returns a structure array having one or more elements:

¢ The first element of the array always represents the default state. (This is
the state set by the last warning on]off all command.)

¢ Each other element of the array represents a warning that is in a state
different from the default.

warning off all
warning on MATLAB:odearguments:InconsistentDataType
warning on MATLAB:rmpath:DirNotFound

s = warning('query', 'all')
S =
3x1 struct array with fields:
identifier
state
s(1)
ans =
identifier: 'all'
state: 'off'

Warning Control

s(2)
ans =
identifier: 'MATLAB:odearguments:InconsistentDataType'
state: 'on'
>> s(3)
ans =

identifier: 'MATLAB:rmpath:DirNotFound'
state: 'on'

Saving and Restoring State

To temporarily change the state of some warnings and then later return to
your original settings, save the original state in a structure array and then
restore it from that array. You can save and restore the state of all of your
warnings or just one that you select with a message identifier.

To save the current warning state, assign the output of a warning control
statement, as discussed in “Output from Control Statements” on page 6-28.
The following statement saves the current state of all warnings in structure
array s:

s = warning('query', 'all');

To restore state from s, use the syntax shown below. Note that the MATLAB
function format (enclosing arguments in parentheses) is required.

warning(s)
Example 1 — Performing an Explicit Query
Perform a query of all warnings to save the current state in structure array s:

s = warning('query', 'all');

Then, after doing some work that includes making changes to the state of
some warnings, restore the original state of all warnings:

warning(s)

6-31

6 tror Handling

Example 2 — Performing an Implicit Query

Turn on one particular warning, saving the previous state of this warning
in s. Remember that this nonquery syntax (where state equals on or off)
performs an implicit query prior to setting the new state:

s = warning('on', 'Control:parameterNotSymmetric');

Restore the state of that one warning when you are ready, with

warning(s)

Backtrace and Verbose Modes

In addition to warning messages, there are two modes that can be enabled or
disabled with a warning control statement. These modes are shown here.

Mode Description Default

verbose Display a message on how to | off (terse)
suppress the warning.

backtrace | Display an stack trace after a | on (enabled)
warning is invoked.

The syntax for this type of control statement is as follows, where state, in
this case, can be only on, off, or query:

warning state mode

Note that there is no need to include a message identifier with this type of
control statement. All enabled warnings are affected by the this type of
control statement.

Note You cannot save and restore the current state of the backtrace or
verbose modes as you can with other states.

Example 1 — Enabling Verbose Warnings

When you enable verbose warnings, MATLAB displays an extra line of
information with each warning that tells you how to suppress it:

6-32

Warning Control

Turn on all warnings, disable backtrace (if you have just run the previous
example), and enable verbose warnings:

warning on all
warning off backtrace
warning on verbose

Create a function that tests a condition and displays a warning message
based on the input:

function testArrayMax(arr, max)
exceedMax = find(arr > max);
if any(exceedMax)
warning('TestEnv:InvalidInput',
‘Values in array "%s" exceed the maximum.',
inputname (1))
end

Call the function to find out how to suppress warnings that might be
generated by that function. Note the last line displayed here:

A = [1287, 5010, 2759];

testArrayMax (A, 5000)
Warning: Values in array "A" exceed the maximum.
(Type "warning off TestEnv:InvalidInput" to suppress this warning.)

Use the message identifier TestEnv:InvalidInput to disable only this
warning, and run the function again. This time the warning message is not
displayed:

warning off TestEnv:InvalidInput
testArrayMax (A, 5000)

Example 2 — Displaying a Stack Trace on a Specific Warning
It can be difficult to locate the source of a warning when it is generated
from code buried in several levels of function calls. This example generates
a warning within a function that is nested several levels deep within the
primary function in file isValidArray.m:

6-33

6 tror Handling

6-34

function isValidArray(A)
max = 5000;
nestFun_1
function nestFun_1
nestFun_2
function nestFun_2
testArrayMax (A, max);
end
end
end

After enabling all warnings, run the program. Due to the value of A(2), the
function generates a warning:

warning on all
warning off verbose

A = [1287, 5010, 2759];

isValidArray(A)
Warning: Values in array "A" exceed the maximum.

In a function of this size, it is not difficult to find the cause of the warning,
but in a file of several hundred lines, this could take some time. To simplify
the debug process, enable backtrace mode. In this mode, MATLAB reports
which function generated the warning (testArrayMax), the line number of the
attempted operation (line 4), the sequence of function calls that led up to the
execution of the function (from isValidArray to nestFun_1 to nestFun_2 and
finally to testArrayMax), and the line at which each of these function calls
were made (3, 5, 7, and 4):

warning on backtrace

callArrayMax(A)
Warning: Values in array "A" exceed the maximum.
> In testArrayMax at 4

In isValidArray>nestFun_1/nestFun_2 at 7

In isValidArray>nestFun_1 at 5

In isValidArray at 3

Debugging Errors and Warnings

Debugging Errors and Warnings

You can direct the MATLAB software to temporarily stop the execution of an
program in the event of a run-time error or warning, at the same time opening
a debug window paused at the line that generated the error or warning.

This enables you to examine values internal to the program and determine
the cause of the error.

Use the dbstop function to have MATLAB stop execution and enter debug
mode when any function you subsequently run produces a run-time error or
warning. There are three types of such breakpoints that you can set.

Command Description

dbstop if all Stop on any error.

error

dbstop if error Stop on any error not detected within a try-catch
block.

dbstop if warning | Stop on any warning.

In all three cases, the file you are trying to debug must be in a folder that is
on the search path or in the current folder.

You cannot resume execution after an error; use dbquit to exit from the
Debugger. To resume execution after a warning, use dbcont or dbstep.

6-35

6 tror Handling

6-36

Program Scheduling

e “Using a MATLAB Timer Object” on page 7-2

e “Creating Timer Objects” on page 7-5

* “Working with Timer Object Properties” on page 7-7

e “Starting and Stopping Timers” on page 7-10

¢ “Creating and Executing Callback Functions” on page 7-14
* “Timer Object Execution Modes” on page 7-19

¢ “Deleting Timer Objects from Memory” on page 7-23

¢ “Finding Timer Objects in Memory” on page 7-24

7 Program Scheduling

Using a MATLAB Timer Object

7-2

In this section...

“Overview” on page 7-2

“Example: Displaying a Message” on page 7-3

Overview

The MATLAB software includes a timer object that you can use to schedule
the execution of MATLAB commands. This section describes how you can
create timer objects, start a timer running, and specify the processing that
you want performed when a timer fires. A timer is said to fire when the
amount of time specified by the timer object elapses and the timer object
executes the commands you specify.

To use a timer, perform these steps:

1 Create a timer object.

You use the timer function to create a timer object. See “Creating Timer
Objects” on page 7-5 for more information.

2 Specify which MATLAB commands you want executed when the timer fires
and control other aspects of timer object behavior.

You use timer object properties to specify this information. To learn about
all the properties supported by the timer object, see “Working with Timer
Object Properties” on page 7-7. (You can also set timer object properties
when you create them, in step 1.)

3 Start the timer object.

After you create the timer object, you must start it, using either the start
or startat function. See “Starting and Stopping Timers” on page 7-10
for more information.

4 Delete the timer object when you are done with it.

Using a MATLAB® Timer Object

After you are finished using a timer object, you should delete it from
memory. See “Deleting Timer Objects from Memory” on page 7-23 for more
information.

Note The specified execution time and the actual execution of a timer can
vary because timer objects work in the MATLAB single-threaded execution
environment. The length of this time lag is dependent on what other
processing MATLAB is performing. To force the execution of the callback
functions in the event queue, include a call to the drawnow function in your
code. The drawnow function flushes the event queue.

Example: Displaying a Message

The following example sets up a timer object that executes a MATLAB
command string after 10 seconds elapse. The example creates a timer
object, specifying the values of two timer object properties, TimerFcn and
StartDelay. TimerFcn specifies the timer callback function. This is the
MATLAB command string or program file that you want to execute when
the timer fires. In the example, the timer callback function sets the value
of the MATLAB workspace variable stat and executes the MATLAB disp
command. The StartDelay property specifies how much time elapses before
the timer fires.

After creating the timer object, the example uses the start function to start
the timer object. (The additional commands in this example are included to
illustrate the timer but are not required for timer operation.)

t = timer('TimerFcn', 'stat=false; disp(''Timer!'"')"',
‘StartDelay',10);
start(t)

stat=true;
while(stat==true)
disp('.")
pause (1)
end

When you execute this code, it produces this output:

7-3

7 Program Scheduling

7-4

Timer!

delete(t) % Always delete timer objects after using them.

Creating Timer Obijects

Creating Timer Objects

In this section...

“Creating the Object” on page 7-5
“Naming the Object” on page 7-6

Creating the Object

To use a timer in MATLAB, you must create a timer object. The timer
object represents the timer in MATLAB, supporting various properties and
functions that control its behavior.

To create a timer object, use the timer function. This creates a valid timer
object with default values for most properties. The following shows an
example of the default timer object and its summary display:

t = timer
Timer Object: timer-1

Timer Settings
ExecutionMode: singleShot
Period: 1
BusyMode: drop
Running: off

Callbacks
TimerFcn: "'
ErrorFcn: '
StartFcn: '
StopFcn: '

MATLAB names the timer object timer-1. (See “Naming the Object” on page
7-6 for more information.)

To specify the value of timer object properties after you create it, you can use
the set function. This example sets the value of the TimerFcn property and
the StartDelay property. For more information about timer object properties,
see “Working with Timer Object Properties” on page 7-7.

7-5

7 Program Scheduling

7-6

set(t, 'TimerFcn',@(x,y)disp('Hello World!'), 'StartDelay',5)

You can also set timer object properties when you create the timer object by
specifying property name and value pairs as arguments to the timer function.
The following example sets the same properties at object creation time:

t = timer('TimerFcn', @(x,y)disp('Hello World!'), 'StartDelay',5);

Always delete timer objects when you are done using them. See “Deleting
Timer Objects from Memory” on page 7-23 for more information.

Naming the Object

MATLAB assigns a name to each timer object you create. This name has the
form 'timer-i’, where i is a number representing the total number of timer
objects created this session.

For example, the first time you call the timer function to create a timer object,
MATLAB names the object timer-1. If you call the timer function again to
create another timer object, MATLAB names the object timer-2.

MATLAB keeps incrementing the number associated with each timer object it
creates, even if you delete the timer objects you already created. For example,
if you delete the first two timer objects and create a new object, MATLAB
names it timer-3, even though the other two timer objects no longer exist in
memory. To reset the numeric part of timer object names to 1, execute the
clear classes command.

Working with Timer Object Properties

Working with Timer Object Properties

In this section...

“Retrieving the Value of Timer Object Properties” on page 7-7
“Setting the Value of Timer Object Properties” on page 7-8

To get information about timer object properties, see the timer function
reference page.

Retrieving the Value of Timer Object Properties

The timer object supports many properties that provide information about
the current state of the timer object and control aspects of its functioning. To
retrieve the value of a timer object property, you can use the get function or
use subscripts (dot notation) to access the field.

The following example uses the set function to retrieve the value of the
ExecutionMode property:

t = timer;

tmode get(t, 'ExecutionMode ')

tmode

singleShot

The following example uses dot notation to retrieve the value of the
ExecutionMode property:

tmode = t.ExecutionMode
tmode =
singleShot

To view a list of all the properties of a timer object, use the get function,
specifying the timer object as the only argument:

7-7

7 Program Scheduling

7-8

get(t)

AveragePeriod: NaN
BusyMode: ‘'drop'
ErrorFcn: '

ExecutionMode: 'singleShot'

InstantPeriod: NaN

Name: 'timer-4'
ObjectVisibility: 'on'
Period: 1
Running: 'off'
StartDelay: 0O
StartFcn: '
StopFcn: '
Tag: ''
TasksExecuted: 0O
TasksToExecute: Inf
TimerFcn: "'
Type: 'timer'
UserData: []

Setting the Value of Timer Object Properties

To set the value of a timer object property, use the set function or subscripted
assignment (dot notation). You can also set timer object properties when you
create the timer object. For more information, see “Creating Timer Objects”
on page 7-5.

The following example uses both methods to assign values to timer object
properties. The example creates a timer that, once started, displays a message
every second until you stop it with the stop command.

1 Create a timer object.
t = timer;

2 Assign values to timer object properties using the set function.

set(t, 'ExecutionMode', 'fixedRate', 'BusyMode', 'drop', 'Period',1);

3 Assign a value to the timer object TimerFcn property using dot notation.

t.TimerFcn = @(x,y)disp('Processing..."');

Working with Timer Object Properties

4 Start the timer object. It displays a message at 1-second intervals.

start(t)

5 Stop the timer object.

stop(t)

6 Delete timer objects after you are done using them.

delete(t)

Viewing a List of All Settable Properties

To view a list of all timer object properties that can have values assigned to
them (in contrast to the read-only properties), use the set function, specifying
the timer object as the only argument.

The display includes the values you can use to set the property if, like the
BusyMode property, the property accepts an enumerated list of values.

t = timer;
set(t)
BusyMode: [{drop} | queue | error]

ErrorFcn: string -or- function handle -or- cell array
ExecutionMode: [{singleShot} | fixedSpacing | fixedDelay | fixedRate]
Name

ObjectVisibility: [{on} | off]

Period

StartDelay

StartFcn: string -or- function handle -or- cell array
StopFcn: string -or- function handle -or- cell array
Tag

TasksToExecute

TimerFcn: string -or- function handle -or- cell array
UserData

7-9

7 Program Scheduling

Starting and Stopping Timers

In this section...

“Starting a Timer” on page 7-10

“Starting a Timer at a Specified Time” on page 7-10
“Stopping Timer Objects” on page 7-11

“Blocking the MATLAB Command Line” on page 7-12

Note Because the timer works within the MATLAB single-threaded
environment, it cannot guarantee execution times or execution rates.

Starting a Timer

To start a timer object, call the start function, specifying the timer object
as the only argument. The start function starts a timer object running;
the amount of time the timer runs is specified in seconds in the StartDelay

property.

This example creates a timer object that displays a greeting after 5 seconds
elapse.

1 Create a timer object, specifying values for timer object properties.

t = timer('TimerFcn',@(x,y)disp('Hello World!'), 'StartDelay', 5);
2 Start the timer object.

start(t)
3 Delete the timer object after you are finished using it.

delete(t);

Starting a Timer at a Specified Time

To start a timer object and specify a date and time for the timer to fire, (rather
than specifying the number of seconds to elapse), use the startat function.
This function starts a timer object and allows you to specify the date, hour,

7-10

Starting and Stopping Timers

minute, and second when you want to the timer to execute. You specify
the time as a MATLAB serial date number or as a specially formatted date
text string.

This example creates a timer object that displays a message after an hour has
elapsed. The startat function starts the timer object running and calculates
the value of the StartDelay property based on the time you specify.

t2=timer('TimerFcn',@(x,y)disp('It has been an hour now'));
startat(t2,now+1/24);

Stopping Timer Objects
Once started, the timer object stops running if one of the following conditions
apply:

® The timer function callback (TimerFcn) has been executed the number of
times specified in the TasksToExecute property.

® An error occurred while executing a timer function callback (TimerFcn).
You can also stop a timer object by using the stop function, specifying the
timer object as the only argument. The following example illustrates stopping
a timer object:

1 Create a timer object.

t = timer('TimerFcn',@(x,y)disp('Hello World!'),
'StartDelay', 100);

2 Start it running.
start(t)

3 Check the state of the timer object after starting it.
get(t, 'Running')
ans =

on

7-11

7 Program Scheduling

7-12

4 Stop the timer using the stop command and check the state again. When
a timer stops, the value of the Running property of the timer object is set
to 'off'.

stop(t)
get(t, 'Running')
ans =

off

5 Delete the timer object when you are finished using it.

delete(t)

Note The timer object can execute a callback function that you specify when
it starts or stops. See “Creating and Executing Callback Functions” on page
7-14.

Blocking the MATLAB Command Line

By default, when you use the start or startat function to start a timer
object, the function returns control to the command line immediately. For
some applications, you might prefer to block the command line until the
timer fires. To do this, call the wait function right after calling the start
or startat function.

1 Create a timer object.

t = timer('StartDelay', 5, 'TimerFcn',
@(x,y)disp('Hello World!'));

2 Start the timer object running.

start(t)

Starting and Stopping Timers

3 After the start function returns, call the wait function immediately. The
wait function blocks the command line until the timer object fires.

wait(t)

4 Delete the timer object after you are finished using it.

delete(t)

7-13

7 Program Scheduling

Creating and Executing Callback Functions

In this section...

“Associating Commands with Timer Object Events” on page 7-14

“Creating Callback Functions” on page 7-15

“Specifying the Value of Callback Function Properties” on page 7-17

Note Callback function execution might be delayed if the callback involves
a CPU-intensive task such as updating a figure.

Associating Commands with Timer Object Events

The timer object supports properties that let you specify the MATLAB
commands that execute when a timer fires, and for other timer object
events, such as starting, stopping, or when an error occurs. These are called
callbacks. To associate MATLAB commands with a timer object event, set the
value of the associated timer object callback property.

The following diagram shows when the events occur during execution of a
timer object and give the names of the timer object properties associated
with each event. For example, to associate MATLAB commands with a start
event, assign a value to the StartFcn callback property. Error callbacks
can occur at any time.

7-14

Creating and Executing Callback Functions

Start Timer fires Stap
event event event
L Startlely — @ - - - oo
/ ¥ .Il.\
Oueve TimerFen
g
Timer fires
| Period event
lueve TimerFen
kg
Y ¥ ¥ ¥
Starffen Timerfen TimerFen StapFen
wllback allback callback allback

Timer Object Events and Related Callback Function

Creating Callback Functions

When the time period specified by a timer object elapses, the timer object
executes one or more MATLAB functions of your choosing. You can specify
the functions directly as the value of the callback property. You can also
put the commands in a function file and specify the function as the value of
the callback property.

Specifying Callback Functions Directly

This example creates a timer object that displays a greeting after 5 seconds.
The example specifies the value of the TimerFcn callback property directly,
putting the commands in a text string.

t = timer('TimerFcn',@(x,y)disp('Hello World!'), 'StartDelay',5);

7-15

7 Program Scheduling

7-16

Note When you specify the callback commands directly as the value of the
callback function property, the commands are evaluated in the MATLAB
workspace.

Putting Commands in a Callback Function

Instead of specifying MATLAB commands directly as the value of a callback
property, you can put the commands in a MATLAB program file and specify
the file as the value of the callback property.

When you create a callback function, the first two arguments must be a
handle to the timer object and an event structure. An event structure contains
two fields: Type and Data. The Type field contains a text string that identifies
the type of event that caused the callback. The value of this field can be any of
the following strings: 'StartFcn', 'StopFcn', 'TimerFcn', or 'ErrorFcn'.
The Data field contains the time the event occurred.

In addition to these two required input arguments, your callback function can
accept application-specific arguments. To receive these input arguments, you
must use a cell array when specifying the name of the function as the value
of a callback property. For more information, see “Specifying the Value of
Callback Function Properties” on page 7-17.

Example: Writing a Callback Function

This example implements a simple callback function that displays the type
of event that triggered the callback and the time the callback occurred. To
illustrate passing application-specific arguments, the example callback
function accepts as an additional argument a text string and includes this
text string in the display output. To see this function used with a callback
property, see “Specifying the Value of Callback Function Properties” on page
7-17.

function my_callback_fcn(obj, event, string_arg)

txti ' event occurred at ‘';
txt2 string_arg;

event_type = event.Type;

Creating and Executing Callback Functions

event_time = datestr(event.Data.time);

msg = [event_type txt1 event_time];
disp(msg)
disp(txt2)

Specifying the Value of Callback Function Properties

You associate a callback function with a specific event by setting the value of
the appropriate callback property. You can specify the callback function as

a text string, cell array, or function handle. To access the object and event
arguments, you must specify the function as a cell array or as a function
handle. If your callback function accepts additional arguments, you must
use a cell array.

The following table shows the syntax for several sample callback functions
and describes how you call them.

How to Specify as a Property
Callback Function Syntax Value
function myfile set(h, 'StartFcn', 'myfile')
function myfile(obj, event) set(h, 'StartFcn', @myfile)
function myfile(obj, event, set(h, 'StartFcn', {'myfile',
argl, arg2) 5, 6})
function myfile(obj, event, set(h, 'StartFcn', {@emyfile,
argl, arg2) 5, 6})

This example illustrates several ways you can specify the value of timer object
callback function properties, some with arguments and some without. To see
the code of the callback function, my_callback fcn, see “Example: Writing

a Callback Function” on page 7-16.

1 Create a timer object.

t = timer('StartDelay', 4, 'Period', 4, 'TasksToExecute', 2,...
'"ExecutionMode', 'fixedRate');

7-17

7 Program Scheduling

7-18

Specify the value of the StartFcn callback. Note that the example specifies
the value in a cell array because the callback function needs to access
arguments passed to it.

t.StartFcn = {'my_callback_fcn', 'My start message'};

Specify the value of the StopFcn callback. The example specifies the
callback function by its handle, rather than as a text string. Again, the
value is specified in a cell array because the callback function needs to
access the arguments passed to it.

t.StopFcn = { @my_callback_fcn, 'My stop message'};

Specify the value of the TimerFcn callback. The example specifies the
MATLAB commands in a text string.

t.TimerFcn = @(x,y)disp('Hello World!');

Start the timer object.

start(t)

The example outputs the following.

StartFcn event occurred at 10-Mar-2004 17:16:59
My start message

Hello World!

Hello World!

StopFcn event occurred at 10-Mar-2004 17:16:59
My stop message

6 Delete the timer object after you are finished with it.

delete(t)

Timer Obiject Execution Modes

Timer Object Execution Modes

In this section...

“Executing a Timer Callback Function Once” on page 7-19

“Executing a Timer Callback Function Multiple Times” on page 7-20

“Handling Callback Function Queuing Conflicts” on page 7-21

Executing a Timer Callback Function Once

The timer object supports several execution modes that determine how it
schedules the timer callback function (TimerFcn) for execution. You specify
the execution mode by setting the value of the ExecutionMode property.

To execute a timer callback function once, set the ExecutionMode property to
'singleShot'. This is the default execution mode. In this mode, the timer
object starts the timer and, after the time period specified in the StartDelay
property elapses, adds the timer callback function (TimerFcn) to the MATLAB
execution queue. When the timer callback function finishes, the timer stops.

The following figure graphically illustrates the parts of timer callback
execution for a singleShot execution mode. The shaded area in the figure,
labelled queue lag, represents the indeterminate amount of time between
when the timer adds a timer callback function to the MATLAB execution
queue and when the function starts executing. The duration of this lag is
dependent on what other processing MATLAB happens to be doing at the time.

singleShot
Start Timer Timer
fimer exetufes staps
----- |—Sfﬂrfﬂe|ﬂ'|-' —T-------——————--jl-----———-r
lueue TimerFen
kg

Timer Callback Execution (singleShot Execution Mode)

7-19

7 Program Scheduling

Executing a Timer Callback Function Multiple Times
The timer object supports three multiple-execution modes:

e 'fixedRate'
e 'fixedDelay'

e 'fixedSpacing'
In many ways, these execution modes operate the same:

¢ The TasksToExecute property specifies the number of times you want the
timer to execute the timer callback function (TimerFcn).

¢ The Period property specifies the amount of time between executions of
the timer callback function.

¢ The BusyMode property specifies how the timer object handles queuing of
the timer callback function when the previous execution of the callback
function has not completed. See “Handling Callback Function Queuing
Conflicts” on page 7-21 for more information.

The execution modes differ only in where they start measuring the time
period between executions. The following table describes these differences.

Execution

Mode Description

'fixedRate' Time period between executions begins immediately after
the timer callback function is added to the MATLAB
execution queue.

'fixedDelay' Time period between executions begins when the timer

function callback actually starts executing, after any time
lag due to delays in the MATLAB execution queue.

‘fixedSpacing'| Time period between executions begins when the timer
callback function finishes executing.

The following figure illustrates the difference between these modes. Note that
the amount of time between executions (specified by the Period property)
remains the same. Only the point at which execution begins is different.

7-20

Timer Obiject Execution Modes

Start Timer
timer enecutes
_— +Shﬁﬂeh1} --Q. ------------------------------------- -
¥
Ouee TimerFen
kg
| Period
Perind ueue TimerFen
lng
fixedSpocing

| Feriod —wi) lueve TimerFen

fixedDelay

Queve Timerfen

log
fixedRale

Differences Between Execution Modes

Handling Callback Function Queuing Conflicts

At busy times, in multiple-execution scenarios, the timer may need to add the
timer callback function (TimerFcn) to the MATLAB execution queue before
the previously queued execution of the callback function has completed.

You can determine how the timer object handles this scenario by using the

BusyMode property.

If you specify 'drop' as the value of the BusyMode property, the timer object
skips the execution of the timer function callback if the previously scheduled

callback function has not already completed.

If you specify 'queue', the timer object waits until the currently executing
callback function finishes before queuing the next execution of the timer

callback function.

7-21

7 Program Scheduling

7-22

Note In 'queue' mode, the timer object tries to make the average time
between executions equal the amount of time specified in the Period property.
If the timer object has to wait longer than the time specified in the Period
property between executions of the timer function callback, it shortens the
time period for subsequent executions to make up the time.

If the BusyMode property is set to 'error', the timer object stops and executes
the timer object error callback function (ErrorFcn), if one is specified.

Deleting Timer Objects from Memory

Deleting Timer Objects from Memory

In this section...

“Deleting One or More Timer Objects” on page 7-23
“Testing the Validity of a Timer Object” on page 7-23

Deleting One or More Timer Objects

When you are finished with a timer object, delete it from memory using the
delete function:

delete(t)

When you delete a timer object, workspace variables that referenced the object
remain. Deleted timer objects are invalid and cannot be reused. Use the clear
command to remove workspace variables that reference deleted timer objects.

To remove all timer objects from memory, enter

delete(timerfind)

For information about the timerfind function, see “Finding Timer Objects in
Memory” on page 7-24.

Testing the Validity of a Timer Object

To test if a timer object has been deleted, use the isvalid function. The
isvalid function returns logical 0 (false) for deleted timer objects:

isvalid(t)
ans =

7-23

7 Program Scheduling

Finding Timer Objects in Memory

7-24

In this section...

“Finding All Timer Objects” on page 7-24
“Finding Invisible Timer Objects” on page 7-24

Finding All Timer Objects

To find all the timer objects that exist in memory, use the timerfind function.
This function returns an array of timer objects. If you leave off the semicolon,
and there are multiple timer objects in the array, timerfind displays
summary information in a table:

t1 = timer;
t2 = timer;
t3 = timer;

t_array = timerfind

Timer Object Array

Index: ExecutionMode: Period: TimerFcn: Name:

1 singleShot 1 v timer-3
2 singleShot 1 v timer-4
3 singleShot 1 v timer-5

Using timerfind to determine all the timer objects that exist in memory can
be helpful when deleting timer objects.

Finding Invisible Timer Objects

If you set the value of a timer object’s ObjectVisibility property to

'off', the timer object does not appear in listings of existing timer objects
returned by timerfind. The ObjectVisibility property provides a way for
application developers to prevent end-user access to the timer objects created
by their application.

Objects that are not visible are still valid. If you have access to the object (for
example, from within the file that created it), you can set its properties. To

Finding Timer Objects in Memory

retrieve a list of all the timer objects in memory, including invisible ones, use
the timerfindall function.

7-25

7 Program Scheduling

7-26

Performance

® “Analyzing Your Program’s Performance” on page 8-2

e “Techniques for Improving Performance” on page 8-4

8 Performance

Analyzing Your Program’s Performance

In this section...

“Overview” on page 8-2
“The Profiler Utility” on page 8-2

“Stopwatch Timer Functions” on page 8-2

Overview

The MATLAB Profiler graphical user interface and the stopwatch timer
functions enable you to get back information on how your program is
performing and help you identify areas that need improvement. The Profiler
can be more useful in measuring relative execution time and in identifying
specific performance bottlenecks in your code, while the stopwatch functions
tend to be more useful for providing absolute time measurements.

The Profiler Utility

A good first step to speeding up your programs is to find out where the
bottlenecks are. This is where you need to concentrate your attention to
optimize your code.

The MATLAB software provides the MATLAB Profiler, a graphical user
interface that shows you where your program is spending its time during
execution. Use the Profiler to help you determine where you can modify your
code to make performance improvements.

To start the Profiler, type profile viewer or select Desktop > Profiler in
the MATLAB Command Window. See Profiling for Improving Performance in
the MATLAB Desktop Tools and Development Environment documentation,
and the profile function reference page.

Stopwatch Timer Functions

If you just need to get an idea of how long your program (or a portion of
it) takes to run, or to compare the speed of different implementations of a
program, you can use the stopwatch timer functions, tic and toc. Invoking

8-2

Analyzing Your Program’s Performance

tic starts the timer, and the first subsequent toc stops it and reports the
time elapsed between the two.

Use tic and toc as shown here:

tic
-- run the program section to be timed --
toc

Keep in mind that tic and toc measure overall elapsed time. Make sure that
no other applications are running in the background on your system that
could affect the timing of your MATLAB programs.

Measuring Smaller Programs

Shorter programs sometimes run too fast to get useful data from tic and toc.
When this is the case, try measuring the program running repeatedly in a
loop, and then average to find the time for a single run:

tic
for k = 1:100
-- run the program --
end
toc

Using tic and toc Versus the cputime Function

Although it is possible to measure performance using the cputime function,
it is recommended that you use the tic and toc functions for this purpose
exclusively. It has been the general rule for CPU-intensive calculations
run on Microsoft Windows machines that the elapsed time using cputime
and the elapsed time using tic and toc are close in value, ignoring any
first time costs. There are cases however that show a significant difference
between these two methods. For example, in the case of a Pentium 4 with
hyperthreading running Windows, there can be a significant difference
between the values returned by cputime versus tic and toc.

8-3

8 Performance

Techniques for Improving Performance

In this section...

“Preallocating Arrays” on page 8-4

“Use Distributed Arrays for Large Datasets” on page 8-5

“When Possible, Replace for with parfor (Parallel for)” on page 8-6
“Limiting Size and Complexity” on page 8-6

“Assigning to Variables” on page 8-6

“Using Appropriate Logical Operators” on page 8-7

“Overloading Built-In Functions” on page 8-8

“Functions Are Generally Faster Than Scripts” on page 8-8

“Load and Save Are Faster Than File I/O Functions” on page 8-8

“Vectorizing Loops” on page 8-8

“Avoid Large Background Processes” on page 8-11

Preallocating Arrays

for and while loops that incrementally increase, or grow, the size of a data
structure each time through the loop can adversely affect performance and
memory use. Repeatedly resizing arrays often requires that MATLAB spend
extra time looking for larger contiguous blocks of memory and then moving
the array into those blocks. You can often improve on code execution time by
preallocating the maximum amount of space that would be required for the
array ahead of time.

The following code creates a scalar variable x, and then gradually increases
the size of x in a for loop instead of preallocating the required amount of
memory at the start:

for k = 2:1000
X(k) = x(k-1) + 5;
end

Technigues for Improving Performance

Change the first line to preallocate a 1-by-1000 block of memory for x
initialized to zero. This time there is no need to repeatedly reallocate memory
and move data as more values are assigned to x in the loop:

X = zeros(1, 1000);
for k = 2:1000

x(k) = x(k-1) + 5;
end

Preallocation Functions

Preallocation makes it unnecessary for MATLAB to resize an array each time
you enlarge it. Use the appropriate preallocation function for the kind of
array you are working with.

Array Type Function Examples

Numeric zeros y = zeros(1, 100);

Cell cell B = cell(2, 3);
B{1,3} = 1:3;

B{2,2} = 'string';

Preallocating a Nondouble Matrix

When you preallocate a block of memory to hold a matrix of some type other
than double, avoid using the method

A = int8(zeros(100));

This statement preallocates a 100-by-100 matrix of int8 first by creating a
full matrix of doubles, and then converting each element to int8. This costs
time and uses memory unnecessarily.

The next statement shows how to do this more efficiently:
A = zeros(100, 'int8');

Use Distributed Arrays for Large Datasets

This topic is described in the “Parallel Math” section of the Parallel
Computing Toolbox™ documentation.

8 Performance

8-6

When Possible, Replace for with parfor (Parallel for)

This topic is described in the “Parallel for-Loops” section of the Parallel
Computing Toolbox documentation.

Limiting Size and Complexity

Running programs that are unusually large or complex can put a strain on
your system’s resources. For example, a program that nearly exceeds memory
capacity may work some of the time and sometimes not, depending on the
commands it uses and on what other applications are running at the time. An
example of unnecessary complexity might be having a large number of if and
else statements where switch and case might be more suitable. This can
also lead to performance and space problems. If you see the following error
message displayed, this is likely to be the source of the problem:

The input was too complicated or too big for MATLAB to parse

If you have a program file that includes thousands of variables or functions,
tens of thousands of statements, or hundreds of language keyword pairs (e.g.,
if-else, or try-catch), then making some of the changes suggested here is
likely to not only boost its performance and reliability, but should make your
program code easier to understand and maintain as well.

e Split large script files into smaller ones, having the first file call the second
if necessary.

e Take your larger chunks of program code and make separate functions (or
subfunctions and nested functions) of them.

¢ [If you have functions or expressions by that seem overly complicated, make
smaller and simpler functions or expressions of them. Simpler functions
are also more likely to be made into utility functions that you can share
with others.

Assigning to Variables

For best performance, keep the following suggestions in mind when assigning
values to variables.

Technigues for Improving Performance

Changing a Variable’s Data Type or Dimension

Changing the class or array shape of an existing variable slows MATLAB
down as it must take extra time to process this. When you need to store data
of a different type, it is advisable to create a new variable.

This code changes the type for X from double to char, which has a negative
impact on performance:

X = 23;

-- otﬁer code --

X = 'A'; % X changed from type double to char
-- otﬁer code --

Assigning Real and Complex Numbers

Assigning a complex number to a variable that already holds a real number
impacts the performance of your program. Similarly, you should not assign a
real value to a variable that already holds a complex value.

Using Appropriate Logical Operators

When performing a logical AND or OR operation, you have a choice of two
operators of each type.

Operator Description

&, | Perform logical AND and OR on arrays element by
element

&&, || Perform logical AND and OR on scalar values with
short-circuiting

In if and while statements, it is more efficient to use the short-circuiting
operators, && for logical AND and || for logical OR. This is because these
operators often do not have to evaluate the entire logical expression. For
example, MATLAB evaluates only the first part of this expression whenever
the number of input arguments is less than three:

8-7

8 Performance

if (nargin >= 3) && (ischar(varargin{3}))

See Short-Circuit Operators in the MATLAB documentation for a discussion
on short-circuiting with && and | |.

Overloading Built-In Functions

Overloading MATLAB built-in functions on any of the standard MATLAB
data classes can negatively affect performance. For example, if you overload
the plus function to handle any of the integer classes differently, you may
hinder certain optimizations in the MATLAB built-in function code for plus,
and thus may slow down any programs that make use of this overload.

Functions Are Generally Faster Than Scripts

Your code executes more quickly if it is implemented in a function rather
than a script.

Load and Save Are Faster Than File 1/0 Functions

If you have a choice of whether to use 1oad and save instead of the low-level
MATLAB file I/0 routines such as fread and fwrite, choose the former.
load and save have been optimized to run faster and reduce memory
fragmentation.

Vectorizing Loops

The MATLAB software uses a matrix language, which means it is designed
for vector and matrix operations. You can often speed up your code by using
vectorizing algorithms that take advantage of this design. Vectorization
means converting for and while loops to equivalent vector or matrix
operations.

Simple Example of Vectorizing
Here is one way to compute the sine of 1001 values ranging from 0 to 10:

i=0;
for t = 0:.01:10
i=1+1;

Technigues for Improving Performance

y(i) = sin(t);
end

A vectorized version of the same code is

t
y

0:.01:10;
sin(t);

The second example executes much faster than the first and is the way
MATLAB is meant to be used. Test this on your system by creating scripts
that contain the code shown, and then using the tic and toc functions to
measure the performance.

Advanced Example of Vectorizing

repmat is an example of a function that takes advantage of vectorization. It
accepts three input arguments: an array A, a row dimension M, and a column
dimension N.

repmat creates an output array that contains the elements of array A,
replicated and “tiled” in an M-by-N arrangement:

A

[123; 45 6];

B = repmat(A,2,3);

1
4
1
4

anonN
D WoWw

1
4
1
4

an onN
D WoWw

1
4
1
4

an onN
D WoWw

repmat uses vectorization to create the indices that place elements in the
output array:

function B = repmat (A, M, N)

% Step 1 Get row and column sizes
[m,n] = size(A);

% Step 2 Generate vectors of indices from 1 to row/column size
mind = (1:m)"';

8-9

8 Performance

8-10

nind = (1:n)';

% Step 3 Create index matrices from vectors above
mind = mind(:,ones(1, M));
nind = nind(:,ones(1, N));

% Step 4 Create output array
B = A(mind,nind);

Step 1, above, obtains the row and column sizes of the input array.

Step 2 creates two column vectors. mind contains the integers from 1 through
the row size of A. The nind variable contains the integers from 1 through
the column size of A.

Step 3 uses a MATLAB vectorization trick to replicate a single column of
data through any number of columns. The code is

B = A(:,ones(1,nCols))
where nCols is the desired number of columns in the resulting matrix.

Step 4 uses array indexing to create the output array. Each element of the
row index array, mind, is paired with each element of the column index array,
nind, using the following procedure:

1 The first element of mind, the row index, is paired with each element of
nind. MATLAB moves through the nind matrix in a columnwise fashion,
somind(1,1) goes with nind(1,1), and then nind(2,1), and so on. The
result fills the first row of the output array.

2 Moving columnwise through mind, each element is paired with the elements
of nind as above. Each complete pass through the nind matrix fills one row
of the output array.

Caution While repmat can take advantage of vectorization, it can do so
at the expense of memory usage. When this is the case, you might find the
bsxfun function be more appropriate in this respect.

Technigues for Improving Performance

Functions Used in Vectorizing
Some of the most commonly used functions for vectorizing are as follows

Function Description

all Test to determine if all elements are nonzero

any Test for any nonzeros

cumsum Find cumulative sum

diff Find differences and approximate derivatives

find Find indices and values of nonzero elements

ind2sub Convert from linear index to subscripts

ipermute Inverse permute dimensions of a multidimensional array

logical Convert numeric values to logical

ndgrid Generate arrays for multidimensional functions and
interpolation

permute Rearrange dimensions of a multidimensional array

prod Find product of array elements

repmat Replicate and tile an array

reshape Change the shape of an array

shiftdim Shift array dimensions

sort Sort array elements in ascending or descending order

squeeze Remove singleton dimensions from an array

sub2ind Convert from subscripts to linear index

sum Find the sum of array elements

Avoid Large Background Processes

Avoid running large processes in the background at the same time you are
executing your program in MATLAB. This frees more CPU time for your
MATLAB session.

8-11

8 Performance

8-12

Memory Usage

e “Memory Allocation” on page 9-2

¢ “Memory Management Functions” on page 9-12

e “Strategies for Efficient Use of Memory” on page 9-15
e “Resolving “Out of Memory” Errors” on page 9-23

9 Memory Usage

Memory Allocation

In this section...

“Memory Allocation for Arrays” on page 9-2

“Data Structures and Memory” on page 9-7

For more information on memory management, see Technical Note 1106:
“Memory Management Guide” at the following URL:

http://www.mathworks.com/support/tech-notes/1100/1106.html

Memory Allocation for Arrays

The topics below provide information on how the MATLAB software allocates
memory when working with arrays and variables. The purpose is to help
you use memory more efficiently when writing code. Most of the time,
however, you should not need to be concerned with these internal operations
as MATLAB handles data storage for you automatically.

® “Creating and Modifying Arrays” on page 9-2

® “Copying Arrays” on page 9-3

* “Array Headers” on page 9-5

¢ “Function Arguments” on page 9-6

Note Any information on how the MATLAB software handles data internally
is subject to change in future releases.

Creating and Modifying Arrays

When you assign a numeric or character array to a variable, MATLAB
allocates a contiguous virtual block of memory and stores the array data in
that block. MATLAB also stores information about the array data, such as its
class and dimensions, in a separate, small block of memory called a header.

http://www.mathworks.com/support/tech-notes/1100/1106.html

Memory Allocation

If you add new elements to an existing array, MATLAB expands the existing
array in memory in a way that keeps its storage contiguous. This usually
requires finding a new block of memory large enough to hold the expanded
array. MATLAB then copies the contents of the array from its original
location to this new block in memory, adds the new elements to the array in
this block, and frees up the original array location in memory.

If you remove elements from an existing array, MATLAB keeps the memory
storage contiguous by removing the deleted elements, and then compacting its
storage in the original memory location.

Working with Large Data Sets. If you are working with large data sets,
you need to be careful when increasing the size of an array to avoid getting
errors caused by insufficient memory. If you expand the array beyond the
available contiguous memory of its original location, MATLAB must make a
copy of the array and set this copy to the new value. During this operation,
there are two copies of the original array in memory. This temporarily doubles
the amount of memory required for the array and increases the risk of your
program running out of memory during execution. It is better to preallocate
sufficient memory for the largest potential size of the array at the start. See
“Preallocating Arrays” on page 8-4.

Copying Arrays

Internally, multiple variables can point to the same block of data, thus
sharing that array’s value. When you copy a variable to another variable (e.g.,
B = A), MATLAB makes a copy of the array reference, but not the array itself.
As long as you do not modify the contents of the array, there is no need to
store more than one copy of it. If you do modify any elements of the array,
MATLAB makes a copy of the array and then modifies that copy.

The following example demonstrates this. Start by creating a simple script
memUsed.m to display how much memory is currently being used by your
MATLAB process. Put these two lines of code in the script:

[usr, sys] = memory;
usr.MemUsedMATLAB

Get an initial reading of how much memory is currently being used by your
MATLAB process:

9-3

9 Memory Usage

format short eng;

memUsed

ans =
295.4977e+006

Create a 2000-by-2000 numeric array A. This uses about 32MB of memory:

A = magic(2000);

memUsed

ans =
327.6349e+006

Make a copy of array A in B. As there is no need at this point to have two
copies of the array data, MATLAB only makes a copy of the array reference.
This requires no significant additional memory:

B = A;

memUsed

ans =
327.6349e+006

Now modify B by making it one half its original size (i.e., set 1000 rows to
empty). This requires that MATLAB make a copy of at least the first 1000
rows of the A array, and assign that copy to B:

B(1001:2000,:) = [];
format short; size(B)
ans =

1000 2000

Check the memory used again. Even though B is significantly smaller than
it was originally, the amount of memory used by the MATLAB process has
increased by about 16 MB (1/2 of the 32 MB originally required for A) because
B could no longer remain as just a reference to A:

format short eng; memUsed

ans =
343.6421e+006

9-4

Memory Allocation

Array Headers

When you assign an array to a variable, MATLAB also stores information
about the array (such as class and dimensions) in a separate piece of memory
called a header. For most arrays, the memory required to store the header is
insignificant. There is a small advantage to storing large data sets in a small
number of large arrays as opposed to a large number of small arrays. This is
because the former configuration requires fewer array headers.

Structure and Cell Arrays. For structures and cell arrays, MATLAB creates
a header not only for each array, but also for each field of the structure and
for each cell of a cell array. Because of this, the amount of memory required to
store a structure or cell array depends not only on how much data it holds,
but also on how it is constructed.

For example, take a scalar structure array S1 having fields R, G, and B. Each
field of size 100-by-50 requires one array header to describe the overall
structure, one header for each unique field name, and one header per field
for the 1-by-1 structure array. This makes a total of seven array headers
for the entire data structure:

S1.R(1:100,1:50)
S1.G(1:100,1:50)
S1.B(1:100,1:50)

On the other hand, take a 100-by-50 structure array S2 in which each element
has scalar fields R, G, and B. You only need one array header to describe the
overall structure, one for each unique field name, and one per field for each of
the 5,000 elements of the structure, making a total of 15,004 array headers
for the entire data structure:

S2(1:100,1:50) .R
S2(1:100,1:50) .G
S2(1:100,1:50).B

Even though S1 and S2 contain the same amount of data, S1 uses significantly
less space in memory. Not only is less memory required, but there is a
corresponding speed benefit to using the S1 format, as well.

See “Cell Arrays” and “Structures” under “Data Structures and Memory”
on page 9-7.

9 Memory Usage

9-6

Memory Usage Reported By the whos Function. The whos function
displays the amount of memory consumed by any variable. For reasons of
simplicity, whos reports only the memory used to store the actual data. It does
not report storage for the array header, for example.

Function Arguments

MATLAB handles arguments passed in function calls in a similar way. When
you pass a variable to a function, you are actually passing a reference to the
data that the variable represents. As long as the input data is not modified
by the function being called, the variable in the calling function and the
variable in the called function point to the same location in memory. If the
called function modifies the value of the input data, then MATLAB makes

a copy of the original array in a new location in memory, updates that copy
with the modified value, and points the input variable in the called function
to this new array.

In the example below, function myfun modifies the value of the array passed
into it. MATLAB makes a copy in memory of the array pointed to by A, sets
variable X as a reference to this new array, and then sets one row of X to zero.
The array referenced by A remains unchanged:

A = magic(500);
myfun(A);

function myfun(X)
X(400,:) = 0;

If the calling function needs the modified value of the array it passed to myfun,
you need to return the updated array as an output of the called function,
as shown here for variable A:

A magic(500);
A myfun(A);
sprintf('The new value of A is %d', A)

function Y = myfun(X)
X(400,:) = 0;
Y = X;

Memory Allocation

Data Structures and Memory

Memory requirements differ for the various types of MATLAB data structures.
You may be able to reduce the amount of memory used for these structures by
considering how MATLAB stores them.

Numeric Arrays

MATLAB requires 1, 2, 4, or 8 bytes to store 8-bit, 16-bit, 32-bit, and 64-bit
signed and unsigned integers, respectively. For floating-point numbers,
MATLAB uses 4 or 8 bytes for single and double types. To conserve memory
when working with numeric arrays, The MathWorks recommends that you
use the smallest integer or floating-point type that will contain your data
without overflowing. For more information, see "Numeric Types" in the
MATLAB Programming Fundamentals documentation.

Complex Arrays

MATLAB stores complex data as separate real and imaginary parts. If you
make a copy of a complex array variable, and then modify only the real or
imaginary part of the array, MATLAB creates a new array containing both
real and imaginary parts.

Sparse Matrices

It is best to store matrices with values that are mostly zero in sparse format.
Sparse matrices can use less memory and may also be faster to manipulate
than full matrices. You can convert a full matrix to sparse format using the
sparse function.

Compare two 1000-by-1000 matrices: X, a matrix of doubles with 2/3 of its
elements equal to zero; and Y, a sparse copy of X. The following example shows
that the sparse matrix requires approximately half as much memory:

whos
Name Size Bytes Class
X 1000x1000 8000000 double array
Y 1000x1000 4004000 double array (sparse)

9-7

9 Memory Usage

9-8

Cell Arrays

In addition to data storage, cell arrays require a certain amount of additional
memory to store information describing each cell. This information is
recorded in a header, and there is one header for each cell of the array. You
can determine the amount of memory required for a cell array header by
finding the number of bytes consumed by a 1-by-1 cell that contains no data,
as shown below for a 32-bit system:

A= {[1}; % Empty cell array

whos A
Name Size Bytes Class Attributes
A 1x1 60 cell

In this case, MATLAB shows the number of bytes required for each header in
the cell array on a 32-bit system to be 60. This is the header size that is used
in all of the 32-bit examples in this section. For 64-bit systems, the header
size 1s assumed to be 112 bytes in this documentation. You can find the
correct header size on a 64-bit system using the method just shown for 32 bits.

To predict the size of an entire cell array, multiply the number you have just
derived for the header by the total number of cells in the array, and then
add to that the number of bytes required for the data you intend to store

in the array:

(header_size x number_of_cells) + data

So a 10-by-20 cell array that contains 400 bytes of data would require 22,800
bytes of memory on a 64-bit system:

(112 x 200) + 400 = 22800

Note While numeric arrays must be stored in contiguous memory, structures
and cell arrays do not.

Example 1 - Memory Allocation for a Cell Array. The following 4-by-1
cell array records the brand name, screen size, price, and on-sale status for
three laptop computers:

Memory Allocation

Laptops = {['SuperrrFast 89X', 'ReliablePlus G5',
'UCanA4dIt 140L6'];
[single(17), single(15.4), single(14.1)];
[2499.99, 1199.99, 499.99];
[true, true, false]};

On a 32-bit system, the cell array header alone requires 60 bytes per cell:
4 cells * 60 bytes per cell = 240 bytes for the cell array

Calculate the memory required to contain the data in each of the four cells:

45 characters * 2 bytes per char = 90 bytes
3 doubles * 8 bytes per double 24 bytes
3 singles * 4 bytes per single 12 bytes
3 logicals * 1 byte per logical = 3 bytes

90 + 24 + 12 + 3 = 129 bytes for the data

Add the two, and then compare your result with the size returned by
MATLAB:

240 + 129 = 369 bytes total

whos Laptops
Name Size Bytes Class Attributes

Laptops 4x1 369 cell

Structures

S.A = [1];
B = whos('S"');
B.bytes - 60
ans =

64

Compute the memory needed for a structure array as follows:

32-bit systems: fields x ((60 x array elements) + 64) + data
64-bit systems: fields x ((112 x array elements) + 64) + data

9 Memory Usage

9-10

On a 64-bit computer system, a 4-by-5 structure Clients with fields Address
and Phone uses 4,608 bytes just for the structure:

2 fields x ((112 x 20) + 64) = 2 x (2240 + 64) = 4608 bytes

To that sum, you must add the memory required to hold the data assigned to
each field. If you assign a 25-character string to Address and a 12-character
string to Phone in each element of the 4-by-5 Clients array, you use 1480
bytes for data:

(25+12) characters * 2 bytes per char * 20 elements = 1480 bytes

Add the two and you see that the entire structure consumes 6,088 bytes of
memory.

Example 1 - Memory Allocation for a Structure Array. Compute the
amount of memory that would be required to store the following 6-by-5
structure array having the following four fields on a 32-bit system:

5-by-8-by-6 signed 8-bit integer array
1-by-200 single array

30-by-30 unsigned 16-bit integer array
1-by-27 character array

OO0 W >

Construct the array:

= int8(ones(5,8,6));
single(1:500);

= uint16(magic(30));

= 'Company Name: The MathWorks';

OO W >
I

s = struct('f1', A, 'f2', B, 'f3', C, 'f4', D);

for m=1:6
for n=1:5
s(m,n)=s(1,1);
end
end

Memory Allocation

Calculate the amount of memory required for the structure itself, and then for
the data it contains:

structure = fields x ((60 x array elements) + 64) =
4 x ((60 x 30) + 64) = 7456 bytes

data = (field1 + field2 + field3 + field4) x array elements =
(240 + 2000 + 1800 + 54) x 30 = 122,820 bytes

Add the two, and then compare your result with the size returned by
MATLAB:

Total bytes calculated for structure s: 7456 + 122,820 = 130,276

whos s
Name Size Bytes Class Attributes
S 6x5 130276 struct

9-11

9 Memory Usage

9-12

Memory Management Functions

The following functions can help you to manage memory use while running
the MATLAB software:

memory displays or returns information about how much memory is
available and how much is used by MATLAB. This includes the following:

= Size of the largest single array MATLAB can create at this time.
= Total size of the virtual address space available for data.

= Total amount of memory used by the MATLAB process for both libraries
and data.

= Available and total Virtual Memory for the MATLAB software process.

= Available system memory, including both physical memory and paging
file.

= Available and the total physical memory (RAM) of the computer.

whos shows how much memory MATLAB currently has allocated for
variables in the workspace.

pack saves existing variables to disk, and then reloads them contiguously.
This reduces the chances of running into problems due to memory
fragmentation.

clear removes variables from memory. One way to increase the amount
of available memory is to periodically clear variables from memory that
you no longer need.

If you use pack and there is still not enough free memory to proceed, you
probably need to remove some of the variables you are no longer using
from memory. Use clear to do this.

save selectively stores variables to the disk. This is a useful technique
when you are working with large amounts of data. Save data to the disk
periodically, and then use the clear function to remove the saved data
from memory.

load reloads a data file saved with the save function.

quit exits MATLAB and returns all allocated memory to the system. This
can be useful on The Open Group UNIX systems, which do not free up

Memory Management Functions

memory allocated to an application (e.g., MATLAB) until the application
exits.

You can use the save and load functions in conjunction with the quit
command to free memory by:

1 Saving any needed variables with the save function.
2 Quitting MATLAB to free all memory allocated to MATLAB.

3 Starting a new MATLAB session and loading the saved variables back
into the clean MATLAB workspace.

The whos Function

The whos command can give you an idea of the memory used by MATLAB
variables.

A = ones(10,10);

whos
Name Size Bytes Class Attributes
A 10x10 800 double

Note that whos does not include information about

¢ Memory used by MATLAB (e.g., Sun Java code and plots).
¢ Memory used for most objects (e.g., time series, custom) .
¢ Memory for variables not in the calling workspace .

¢ Shared data copies. whos shows bytes used for a shared data copy even
when it does not use any memory. This example shows that whos reports
an array (A) and a shared data copy of that array (B) separately, even
though the data exists only once in memory:

Store 400 MB array as A. Memory used = 381MB (715 MB — 334 MB) :

memory
Memory used by MATLAB: 334 MB (3.502e+008 bytes)

A = rand(5e7,1);

9-13

9 Memory Usage

memory
Memory used by MATLAB: 715 MB (7.502e+008 bytes)
whos
Name Size Bytes Class Attributes
A 50000000x1 400000000 double

Create B and point it to A. Note that although whos shows both A and B,
there is only one copy of the data in memory. No additional memory is
consumed by assigning A to B:

B = Aj
memory
Memory used by MATLAB: 715 MB (7.502e+008 bytes)
whos
Name Size Bytes Class Attributes
A 50000000x1 400000000 double
B 50000000x1 400000000 double

Modifying B(1)copies all of A to B and changes the value of B(1). Memory
used = 382MB (1097 MB — 715 MB). Now there are two copies of the data
in memory, yet the output of whos does not change:

B(1) = 3;
memory
Memory used by MATLAB: 1097 MB (1.150e+009 bytes)
whos
Name Size Bytes Class Attributes
A 50000000x1 400000000 double
B 50000000x1 400000000 double

9-14

Strategies for Efficient Use of Memory

Strategies for Efficient Use of Memory

In this section...

“Ways to Reduce the Amount of Memory Required” on page 9-15
“Using Appropriate Data Storage” on page 9-17
“How to Avoid Fragmenting Memory” on page 9-20

“Reclaiming Used Memory” on page 9-22

Ways to Reduce the Amount of Memory Required

The source of many "out of memory" problems often involves analyzing or
processing an existing large set of data such as in a file or a database. This
requires bringing all or part of the data set into the MATLAB software
process. The following techniques deal with minimizing the required memory
during this stage.

Load Only As Much Data As You Need

Only import into MATLAB as much of a large data set as you need for the
problem you are trying to solve. This is not usually a problem when importing
from sources, such as a database where you can explicitly search for elements
matching a query. But this is a common problem with loading large flat text
or binary files. Many users are tempted to try and load the entire file first,
and then process it with MATLAB. Be sure to use the appropriate MATLAB
function to load parts of files.

Text Files. Use the textscan function to access parts of a large text file by
reading only the selected columns and rows. If you specify the number of rows
or a repeat format number with textscan, MATLAB calculates the exact
amount of memory required beforehand.

Binary Files. You can use low-level binary file I/0 functions, such as fread,
to access parts of any file that has a known format. For binary files of an
unknown format, try using memory mapping with the memmapfile function.

MAT-Files. Use the whos function with the -file option to preview the file.

This command displays each array in the MAT-file that you specify and the
number of bytes in the array:

9-15

9 Memory Usage

9-16

whos -file sessioni.mat

Name Size Bytes Class Attributes
S2 1x1 723 struct

X 100x200 72 double sparse
Mat4 4x20 640 double

A 3151872x1 3151872 uint8

Seq 1x912211 912211 1int8

If there are large arrays in the MAT-file that you do not need for your current
task, you can selectively import only those variables that you want using load.

HDF Files. You can load parts of HDF files using the hdfread and hdf5read
functions.

Image, Audio, and Video Files. The MATLAB functions that support
loading from these types of files usually require that you import the entire
file. To import portions of the file, use low-level I/O functions such as fread.

Process Data By Blocks

Consider block processing, that is, processing a large data set one section at a
time in a loop. Reducing the size of the largest array in a data set reduces
the size of any copies or temporaries needed. You can use this technique

in either of two ways:

® For a subset of applications that you can break into separate chunks and
process independently.

® For applications that only rely on the state of a previous block, such as
filtering.

Avoid Creating Temporary Arrays

Avoid creating large temporary variables, and also make it a practice to
clear those temporary variables you do use when they are no longer needed.
For example, when you create a large array of zeros, instead of saving to a
temporary variable A, and then converting A to a single:

A = zeros(1e6,1);
As = single(A);

Strategies for Efficient Use of Memory

use just the one command to do both operations:
A = zeros(1e6,1,'single');

Using the repmat function, array preallocation and for loops are other ways
to work on nondouble data without requiring temporary storage in memory.

Use Nested Functions to Pass Fewer Arguments

When working with large data sets, be aware that MATLAB makes a
temporary copy of an input variable if the called function modifies its value.
This temporarily doubles the memory required to store the array, which
causes MATLAB to generate an error if sufficient memory is not available.

One way to use less memory in this situation is to use nested functions. A
nested function shares the workspace of all outer functions, giving the nested
function access to data outside of its usual scope. In the example shown here,
nested function setrowval has direct access to the workspace of the outer
function myfun, making it unnecessary to pass a copy of the variable in the
function call. When setrowval modifies the value of A, it modifies it in the
workspace of the calling function. There is no need to use additional memory
to hold a separate array for the function being called, and there also is no
need to return the modified value of A:

function myfun
A = magic(500);

function setrowval(row, value)
A(row,:) = value;
end

setrowval (400, 0);

disp('The new value of A(399:401,1:10) is')
A(399:401,1:10)

end

Using Appropriate Data Storage

MATLAB provides you with different sizes of data classes, such as double and
uint8, so you do not need to use large classes to store your smaller segments

9-17

9 Memory Usage

of data. For example, it takes 7,000 KB less memory to store 1,000 small
unsigned integer values using the uint8 class than it does with double.

Use the Appropriate Numeric Class

The numeric class you should use in MATLAB depends on your intended
actions. The default class double gives the best precision, but requires 8 bytes
per element of memory to store. If you intend to perform complicated math
such as linear algebra, you must use a floating-point class such as a double or
single. The single class requires only 4 bytes. There are some limitations
on what you can do with singles, but most MATLAB Math operations are
supported.

If you just need to carry out simple arithmetic and you represent the original
data as integers, you can use the integer classes in MATLAB. The following is
a list of numeric classes, memory requirements (in bytes), and the supported

operations.
Class (Data Type) Bytes | Supported Operations
single 4 Most math
double All math
logical Logical/conditional operations
int8, uint8 Arithmetic and some simple functions

int16, uinti16
int32, uint32
int64, int64

Arithmetic and some simple functions

Arithmetic and some simple functions

Q| [DN | = | =] 00

Arithmetic and some simple functions

Reduce the Amount of Overhead When Storing Data

MATLAB arrays (implemented internally as mxArrays) require room to store
meta information about the data in memory, such as type, dimensions, and
attributes. This takes about 80 bytes per array. This overhead only becomes
an issue when you have a large number (e.g., hundreds or thousands) of
small mxArrays (e.g., scalars). The whos command lists the memory used by
variables, but does not include this overhead.

9-18

Strategies for Efficient Use of Memory

Because simple numeric arrays (comprising one mxArray) have the least
overhead, you should use them wherever possible. When data is too complex
to store in a simple array (or matrix), you can use other data structures.

Cell arrays are comprised of separate mxArrays for each element. As a result,
cell arrays with many small elements have a large overhead.

Structures require a similar amount of overhead per field (see the
documentation on “Array Headers” on page 9-5 above). Structures with many
fields and small contents have a large overhead and should be avoided. A
large array of structures with numeric scalar fields requires much more
memory than a structure with fields containing large numeric arrays.

Also note that while MATLAB stores numeric arrays in contiguous memory,
this is not the case for structures and cell arrays.

Import Data to the Appropriate MATLAB Class

When reading data from a binary file with fread, it is a common error to
specify only the class of the data in the file, and not the class of the data
MATLAB uses once it is in the workspace. As a result, the default double is
used even if you are reading only 8-bit values. For example,

fid = fopen('large_file_of_uint8s.bin', 'r');
a = fread(fid, 1e3, 'uint8'); % Requires 8k
whos a
Name Size Bytes Class Attributes
a 1000x1 8000 double
a = fread(fid, 1e3, 'uint8=>uint8'); % Requires 1k
whos a
Name Size Bytes Class Attributes
a 1000x1 1000 uint8

Make Arrays Sparse When Possible

If your data contains many zeros, consider using sparse arrays, which store
only nonzero elements. The example below compares the space required for
storage of an array of mainly zeros:

9-19

9 Memory Usage

9-20

A = diag(1e3,1e3); % Full matrix with ones on the diagonal
As = sparse(A) % Sparse matrix with only nonzero elements
whos

Name Size Bytes Class

A 1001x1001 8016008 double array

As 1001x1001 4020 double array (sparse)

You can see that this array requires only approximately 4 KB to be stored as
sparse, but approximately 8 MB as a full matrix. In general, for a sparse
double array with nnz nonzero elements and ncol columns, the memory
required is

® 16 *nnz + 8 * ncol + 8 bytes (on a 64 bit machine)

® 12*nnz + 4 * ncol + 4 bytes (on a 32 bit machine)

Note that MATLAB does not support all mathematical operations on sparse
arrays.

How to Avoid Fragmenting Memory

MATLAB always uses a contiguous segment of memory to store a numeric
array. As you manipulate this data, however, the contiguous block can become
fragmented. When memory is fragmented, there may be plenty of free space,
but not enough contiguous memory to store a new large variable. Increasing
fragmentation can use significantly more memory than is necessary.

Preallocate Contiguous Memory When Creating Arrays

In the course of a MATLAB session, memory can become fragmented due

to dynamic memory allocation and deallocation. for and while loops that
incrementally increase, or grow, the size of a data structure each time through
the loop can add to this fragmentation as they have to repeatedly find and
allocate larger blocks of memory to store the data.

To make more efficient use of your memory, preallocate a block of memory
large enough to hold the matrix at its final size before entering the loop. When
you preallocate memory for an array, MATLAB reserves sufficient contiguous
space for the entire full-size array at the beginning of the computation. Once

Strategies for Efficient Use of Memory

you have this space, you can add elements to the array without having to
continually allocate new space for it in memory.

For more information on preallocation, see “Preallocating Arrays” on page 8-4.

Allocate Your Larger Arrays First

MATLAB uses a heap method of memory management. It requests memory
from the operating system when there is not enough memory available in the
heap to store the current variables. It reuses memory as long as the size of
the memory segment required is available in the heap.

The following statements can require approximately 4.3 MB of RAM. This is
because MATLAB may not be able to reuse the space previously occupied by
two 1 MB arrays when allocating space for a 2.3 MB array:

a = rand(1e6,1);
b = rand(1e6,1);
clear

C = rand(2.3e6,1);

The simplest way to prevent overallocation of memory is to allocate the largest
vectors first. These statements require only about 2.0 MB of RAM:

C = rand(2.3e6,1);
clear

a = rand(1e6,1);

b = rand(1e6,1);

Long-Term Usage (Windows Systems Only)

On 32-bit Microsoft Windows, the workspace of MATLAB can fragment over
time due to the fact that the Windows memory manager does not return
blocks of certain types and sizes to the operating system. Clearing the
MATLAB workspace does not fix this problem. You can minimize the problem
by allocating the largest variables first. This cannot address, however, the
eventual fragmentation of the workspace that occurs from continual use of
MATLAB over many days and weeks, for example. The only solution to this is
to save your work and restart MATLAB.

9-21

9 Memory Usage

9-22

The pack command, which saves all variables to disk and loads them back,
does not help with this situation.

Reclaiming Used Memory

One simple way to increase the amount of memory you have available is to
clear large arrays that you no longer use.

Save Your Large Data Periodically to Disk

If your program generates very large amounts of data, consider writing the
data to disk periodically. After saving that portion of the data, use the clear
function to remove the variable from memory and continue with the data
generation.

Clear Old Variables from Memory When No Longer Needed

When you are working with a very large data set repeatedly or interactively,
clear the old variable first to make space for the new variable. Otherwise,
MATLAB requires temporary storage of equal size before overriding the
variable. For example,

a = rand(100e6,1) % 800 MB array

a = rand(100e6,1) % New 800 MB array
??? Error using ==> rand

Out of memory. Type HELP MEMORY for your options.

clear a
a = rand(100e6,1) % New 800 MB array

Resolving “Out of Memory” Errors

Resolving “Out of Memory” Errors

In this section...

“General Suggestions for Reclaiming Memory” on page 9-23
“Setting the Process Limit” on page 9-24

“Disabling Java VM on Startup ” on page 9-25

“Increasing System Swap Space” on page 9-26

“Using the 3GB Switch on Windows Systems” on page 9-27

“Freeing Up System Resources on Windows Systems” on page 9-27

General Suggestions for Reclaiming Memory

The MATLAB software generates an Out of Memory message whenever it
requests a segment of memory from the operating system that is larger than
what is currently available. When you see the Out of Memory message,

use any of the techniques discussed under “Strategies for Efficient Use of
Memory” on page 9-15 to help optimize the available memory. If the Out of
Memory message still appears, you can try any of the following:

Compress data to reduce memory fragmentation.

If possible, break large matrices into several smaller matrices so that less
memory is used at any one time.

If possible, reduce the size of your data.

Make sure that there are no external constraints on the memory accessible
to MATLAB. (On The Open Group UNIX? systems, use the 1imit command
to check).

Increase the size of the swap file. We recommend that you configure your
system with twice as much swap space as you have RAM. See “Increasing
System Swap Space” on page 9-26, below.

Add more memory to the system.

2. UNIX is a registered trademark of The Open Group in the United States and other
countries.

9-23

9 Memory Usage

9-24

Setting the Process Limit

The platforms and operating systems that MATLAB supports have different
memory characteristics and limitations. In particular, the process limit is the
maximum amount of virtual memory a single process (or application) can
address. On 32-bit systems, this is the most important factor limiting data
set size. The process limit must be large enough for MATLAB to store all of
the data it is to process, plus M code, the MATLAB executable itself, and

additional state information.

Where possible, choose an operating system that maximizes this number, that
is, a 64-bit operating system. The following is a list of MATLAB supported
operating systems and their process limits.

Operating System

Process Limit

32-bit Microsoft Windows XP,
Windows Vista™,

2 GB

32-bit Windows XP with 3 GB
boot.ini switch or 32-bit Windows
Vista with increaseuserva set (see
later)

3 GB

32-bit Linux® (Linux is a registered
trademark of Linus Torvalds.)

~3 GB

64-bit Windows XP, Apple®
Macintosh® OS X, Linux, or Sun
Solaris™ running 32-bit MATLAB

<4 GB

64-bit Windows XP, Windows Vista,
Linux, or Solaris running 64-bit
MATLAB

8 TB

To verify the current process limit of MATLAB on Windows systems, use

the memory function.

Maximum possible array:

Memory available for all arrays:

Memory used by MATLAB:
Physical Memory (RAM):

583 MB (6.111e+008 bytes) *
1515 MB (1.588e+009 bytes) **
386 MB (4.050e+008 bytes)
2014 MB (2.112e+009 bytes)

Resolving “Out of Memory” Errors

* Limited by contiguous virtual address space available.
** | imited by virtual address space available.

When called with one output variable, the memory function returns or displays
the following values. See the function reference for memory to find out how
to use it with more than one output.

memory Return Value | Description

MaxPossibleArrayBytes | Size of the largest single array MATLAB can
currently create

MemAvailableAllArrays | Total size of the virtual address space available
for data

MemUsedMATLAB Total amount of memory used by the MATLAB
process

View the value against the Total entry in the Virtual Memory section. It is
shown as 2 GB in the table, which is the default on Windows XP systems. On
UNIX systems, see the ulimit command to view and set user limits including
virtual memory.

Disabling Java VM on Startup

On UNIX systems, you can increase the workspace size by approximately
400 MB if you start MATLAB without the Sun Java VM. To do this, use the
command line option -nojvm to start MATLAB. This also increases the size
of the largest contiguous block (and therefore the largest matrix) by about
the same.

Using -nojvm comes with a penalty in that you will lose many features that
rely on the Java software, including the entire development environment.

Starting MATLAB with the -nodesktop option does not save any substantial
amount of memory.

Shutting down other applications and services (e.g., using msconfig on

Windows systems) can help if total system memory is the limiting factor, but
usually process limit (on 32-bit machines) is the main limiting factor.

9-25

9 Memory Usage

9-26

Increasing System Swap Space

The total memory available to applications on your computer is comprised of
physical memory (RAM), plus a page file, or swap file, on disk. The page or
swap file can be very large, even on 32-bit systems (e.g., 16 TB (terabytes) on
32-bit Windows, 512 TB on 64-bit Windows). The operating system allocates
the virtual memory of each process to either physical RAM or to this file,
depending on its needs and those of other processes.

How you set the swap space for your computer depends on what operating
system you are running on.

UNIX Systems

For more information about swap space, type pstat -s atthe UNIX command
prompt. For detailed information on changing swap space, ask your system
administrator.

Linux Systems

You can change your swap space by using the mkswap and swapon commands.
For more information on the above commands, type man followed by the
command name at the Linux prompt.

Windows XP Systems

Follow the steps shown here:
1 Right-click the My Computer icon, and select Properties.

2 In the System Properties GUI, select the Advanced tab. In the section
labeled Performance, click the Settings button.

3 In the Performance Options GUI, click the Advanced tab. In the section
labeled Virtual Memory, click the Change button

4 In the Virtual Memory GUI, under Paging file size for selected drive,
you can change the amount of virtual memory.

Resolving “Out of Memory” Errors

Using the 3GB Switch on Windows Systems

Microsoft Windows XP systems can allocate 3 GB (instead of the default 2
GB) to processes, if you set an appropriate switch in the boot.ini file of the
system. The MathWorks recommends that you only do this with Windows XP
SP2 systems or later. This gives an extra 1 GB of virtual memory to MATLAB,
not contiguous with the rest of the memory. This enables you to store more
data, but not larger arrays, as these are limited by contiguous space. This is
mostly beneficial if you have enough RAM (e.g., 3 or 4 GB) to use it.

After setting the switch, confirm the new value of the virtual memory after
restarting your computer and using the memory function.

[userview systemview] = memory;

systemview.VirtualAddressSpace
ans =
Available: 1.6727e+009 % Virtual memory available to MATLAB.
Total: 2.1474e+009 % Total virtual memory

For more documentation on this option, use the following URL:
http://support.microsoft.com/support/kb/articles/Q291/9/88.ASP

Similarly, on machines running Microsoft Windows Vista, you can achieve the
same effect by using the command:

BCDEdit /set increaseuserva 3072

For more documentation on this option, use the following URL:

http://msdn2.microsoft.com/en-us/library/aa906211.aspx

Freeing Up System Resources on Windows Systems

There are no functions implemented to manipulate the way MATLAB handles
Microsoft Windows system resources. Windows systems use these resources
to track fonts, windows, and screen objects. Resources can be depleted by
using multiple figure windows, multiple fonts, or several UI controls. One
way to free up system resources is to close all inactive windows. Windows
system icons still use resources.

9-27

http://support.microsoft.com/support/kb/articles/Q291/9/88.ASP
http://msdn2.microsoft.com/en-us/library/aa906211.aspx

9 Memory Usage

9-28

Programming Tips

¢ “Introduction” on page 10-2

¢ “Command and Function Syntax” on page 10-3
e “Help” on page 10-6

¢ “Development Environment” on page 10-10

¢ “Functions” on page 10-12

¢ “Function Arguments” on page 10-15

¢ “Program Development” on page 10-18

® “Debugging” on page 10-21

® “Variables” on page 10-25

® “Strings” on page 10-29

¢ “Evaluating Expressions” on page 10-32

e “MATLAB Path” on page 10-34

¢ “Program Control” on page 10-38

e “Save and Load” on page 10-42

¢ “Files and Filenames” on page 10-45

¢ “Input/Output” on page 10-48

e “Starting MATLAB” on page 10-51

® “Operating System Compatibility” on page 10-52
¢ “Demos” on page 10-54

¢ “For More Information” on page 10-55

'IO Programming Tips

Introduction

This section is a categorized compilation of tips for the MATLAB programmer.
Each item is relatively brief to help you browse through them and find
information that is useful. Many of the tips include a reference to specific
MATLAB documentation that gives you more complete coverage of the topic.
You can find information on the following topics:

For suggestions on how to improve the performance of your MATLAB

programs, and how to write programs that use memory more efficiently, see
Improving Performance and Memory Usage

10-2

Command and Function Syntax

Command and Function Syntax

In this section...

“Syntax Help” on page 10-3

“Command and Function Syntaxes” on page 10-3
“Command Line Continuation” on page 10-3

“Completing Commands Using the Tab Key” on page 10-4
“Recalling Commands” on page 10-4

“Clearing Commands” on page 10-5

“Suppressing Output to the Screen” on page 10-5

Syntax Help

For help about the general syntax of MATLAB functions and commands, type

help syntax

Command and Function Syntaxes

You can enter MATLAB commands using either a command or function
syntax. It is important to learn the restrictions and interpretation rules for

both.
functionname argil arg2 arg3 % Command syntax
functionname('argl', 'arg2', 'arg3"') % Function syntax

For more information: See Calling Functions in the MATLAB
Programming Fundamentals documentation.

Command Line Continuation

You can continue most statements to one or more additional lines by
terminating each incomplete line with an ellipsis (...). Breaking down
a statement into a number of lines can sometimes result in a clearer
programming style.

sprintf ('Example %d shows a command coded on %d lines.\n',
exampleNumber,

10-3

'IO Programming Tips

10-4

numberOfLines)

Note that you cannot continue an incomplete string to another line.

disp 'This statement attempts to continue a string
to another line, resulting in an error.'

For more information: See Entering Long Statements in the MATLAB
Desktop Tools and Development Environment documentation.

Completing Commands Using the Tab Key

You can save some typing when entering commands by entering only the first
few letters of the command, variable, property, etc. followed by the Tab key.

Typing the second line below (with T representing Tab) yields the expanded,
full command shown in the third line:

f = figure;
set(f, 'papTuT, 'cT) % Type this line.
set(f, 'paperunits','centimeters') % This is what you get.

If there are too many matches for the string you are trying to complete, you
will get no response from the first Tab. Press Tab again to see all possible
choices:

set(f, 'paTT
PaperOrientation PaperPositionMode PaperType Parent
PaperPosition PaperSize PaperUnits

For more information: See Tab Completion in the Command Window in
the MATLAB Desktop Tools and Development Environment documentation

Recalling Commands

Use any of the following methods to simplify recalling previous commands
to the screen:

® To recall an earlier command to the screen, press the up arrow key one or
more times, until you see the command you want. If you want to modify the
recalled command, you can edit its text before pressing Enter or Return
to execute it.

Command and Function Syntax

¢ To recall a specific command by name without having to scroll through your
earlier commands one by one, type the starting letters of the command,
followed by the up arrow key.

®* Open the Command History window (Desktop > Command History) to
see all previous commands. Double-click the command you want to execute.

For more information: See Recalling Previous Lines and Command History
Window in the MATLAB Desktop Tools and Development Environment
documentation.

Clearing Commands

If you have typed a command that you then decide not to execute, you can
clear it from the Command Window by pressing the Escape (Esc) key.

Suppressing Output to the Screen

To suppress output to the screen, end statements with a semicolon. This can
be particularly useful when generating large matrices.

A = magic(100); % Create matrix A, but do not display it.

10-5

'IO Programming Tips

Help

In this section...

“Using the Help Browser” on page 10-6

“Help on Functions from the Help Browser” on page 10-6
“Help on Functions from the Command Window” on page 10-7
“Topical Help” on page 10-7

“Paged Output” on page 10-8

“Writing Your Own Help” on page 10-8

“Help for Subfunctions and Private Functions” on page 10-9

“Help for Methods and Overloaded Functions” on page 10-9

Using the Help Browser
Open the Help browser from the MATLAB Command Window using one of

the following:

® (Click the question mark symbol in the toolbar.
¢ Select Help > Product Help from the menu.
® Type the word doc at the command prompt.

For more information: See Finding Information with the Help Browser in
the MATLAB Desktop Tools and Development Environment documentation.

Help on Functions from the Help Browser
You can find help on a MATLAB function in any of the following ways:

¢ (Click the button in the left pane of the Help browser. This brings you to
that part of the Function Reference documentation that is organized by
category. To use an alphabetical list to get help on a specific function, click
Alphabetical List at the top of that page.

® (Click the button in the left pane of the Help browser. Look in the upper left
corner of the page for links to either Functions: By Category, or Functions:

10-6

Help

Alphabetical List and click there for the type of documentation access
you prefer.

® Type doc functionname at the command line.

Help on Functions from the Command Window
Several types of help on functions are available from the Command Window:

e To list all categories that you can request help on from the Command
Window, just type

help

® To see a list of functions for one of these categories, along with a brief
description of each function, type help category. For example,

help datafun

® To get help on a particular function, type help functionname. For example,

help sortrows

Topical Help

In addition to the help on individual functions, you can get help on any of the
following topics by typing help topicname at the command line.

Topic Name Description

arith Arithmetic operators

relop Relational and logical operators

punct Special character operators

slash Arithmetic division operators

paren Parentheses, braces, and bracket operators

precedence Operator precedence

datatypes MATLAB classes, their associated functions, and
operators that you can overload

lists Comma separated lists

10-7

'IO Programming Tips

10-8

Topic Name Description

strings Character strings

function_handle Function handles and the @ operator

debug Debugging functions

java Using Sun Java from within the MATLAB software.
fileformats A list of readable file formats

changeNotification| Microsoft Windows change notification

Paged Output

Before displaying a lengthy section of help text or code, put MATLAB into its
paged output mode by typing more on. This breaks up any ensuing display
into pages for easier viewing. Turn off paged output with more off.

Page through the displayed text using the space bar key. Or step through
line by line using Enter or Return. Discontinue the display by pressing
the Q key or Ctrl+C.

Writing Your Own Help

Start each program you write with a section of text providing help on how and
when to use the function. If formatted properly, the MATLAB help function
displays this text when you enter

help functionname

MATLAB considers the first group of consecutive lines immediately following
the function definition line that begin with % to be the help section for the
function. The first line without % as the left-most character ends the help.

For more information: See Help Text in the MATLAB Desktop Tools and
Development Environment documentation.

Help

Help for Subfunctions and Private Functions

You can write help for subfunctions using the same rules that apply to main
functions. To display the help for the subfunction mysubfun in file myfun.m,

type

help myfun>mysubfun

To display the help for a private function, precede the function name with
private/. To get help on private function myprivfun, type

help private/myprivfun

Help for Methods and Overloaded Functions

You can write help text for object-oriented class methods implemented as
MATLAB functions. Display help for the method by typing

help classname/methodname
where the file methodname.m resides in subfolder @classname.

For example, if you write a plot method for a class named polynom, (where
the plot method is defined in the file @olynom/plot.m), you can display
this help by typing

help polynom/plot

You can get help on overloaded MATLAB functions in the same
way. To display the help text for the eq function as implemented in
matlab/iofun/@serial, type

help serial/eq

10-9

'IO Programming Tips

Development Environment

10-10

In this section...

“Workspace Browser” on page 10-10

“Using the Find and Replace Utility” on page 10-10
“Commenting Out a Block of Code” on page 10-11
“Creating Functions from Command History” on page 10-11

“Editing Functions in EMACS” on page 10-11

Workspace Browser

The Workspace browser is a graphical interface to the variables stored in
the MATLAB base and function workspaces. You can view, modify, save,
load, and create graphics from workspace data using the browser. Select
Desktop > Workspace to open the browser.

To view function workspaces, you need to be in debug mode.

For more information: See MATLAB Workspace in the MATLAB Desktop
Tools and Development Environment documentation.

Using the Find and Replace Utility

Find any word or phrase in a group of files using the Find and Replace utility.
Click Desktop > Current Folder, click the icon at the top of the Current
Folder window, and then select Find Files from the menu that appears.

When entering search text, you do not need to put quotes around a phrase.
In fact, parts of words, like win for windows, will not be found if enclosed in
quotes.

For more information: See Finding and Replacing Text in the Current
File in the MATLAB Desktop Tools and Development Environment
documentation.

Development Environment

Commenting Out a Block of Code
To comment out a block of text or code within the MATLAB editor,

1 Highlight the block of text you would like to comment out.

2 Holding the mouse over the highlighted text, select Text > Comment (or
Uncomment, to do the reverse) from the toolbar. (You can also get these
options by right-clicking the mouse.)

For more information: See Adding Comments in the MATLAB Desktop

Tools and Development Environment documentation.

Creating Functions from Command History

If there is part of your current MATLAB session that you would like to add to
a function, this is easily done using the Command History window:

1 Open this window by selecting Desktop > Command History.

2 Use Shift+Click or Ctrl+Click to select the lines you want to use.
MATLAB highlights the selected lines.

3 Right-click once, and select Create M-File from the menu that appears.
MATLAB creates a new Editor window displaying the selected code.

Editing Functions in EMACS

If you use Emacs, you can download editing modes for editing MATLAB
functions with GNU-Emacs or with early versions of Emacs from the
MATLAB Central Web site:

http://www.mathworks.com/matlabcentral/

At this Web site, select File Exchange, and then Utilities > Emacs.

For more information: See General Preferences for the Editor/Debugger in
the MATLAB Desktop Tools and Development Environment documentation.

10-11

http://www.mathworks.com/matlabcentral/

'IO Programming Tips

Functions

10-12

In this section...

“Function Structure” on page 10-12

“Using Lowercase for Function Names” on page 10-12
“Getting a Function’s Name and Path” on page 10-13
“What Files Does a Function Use?” on page 10-13

“Dependent Functions, Built-Ins, Classes” on page 10-14

Function Structure
An MATLAB function consists of the components shown here:

function [x, y] = myfun(a, b, c) % Function definition line

H1 line -- A one-line summary of the function's purpose.

Help text -- One or more lines of help text that explain
how to use the function. This text is displayed when
the user types "help functionname".

o o° o°

o°

o°

The Function body normally starts after the first blank line.
Comments -- Description (for internal use) of what the
function does, what inputs are expected, what outputs
are generated. Typing "help functionname" does not display
this text.

o o° o°

o°

X = prod(a, b); % Start of Function code

For more information: See Basic Parts of a Function in the MATLAB
Programming Fundamentals documentation.

Using Lowercase for Function Names

Function names appear in uppercase in MATLAB help text only to make the
help easier to read. In practice, however, it is usually best to use lowercase
when calling functions.

Functions

Case requirements depend on the case sensitivity of the operating system you
are using. As a rule, naming and calling functions using lowercase generally
makes them more portable from one operating system to another.

Getting a Function’s Name and Path

To obtain the file name for the function currently being executed, use the
following function in your code.

mfilename

To include the path along with the file name, use

x "mfilename('fullpath')

For more information: See the mfilename function reference page.

What Files Does a Function Use?

For a simple display of all functions referenced by a particular function, follow
the steps below:

1 Type clear functions to clear all functions from memory (see Note below).

2 Execute the function you want to check. Note that the function arguments
you choose to use in this step are important, since you can get different
results when calling the same function with different arguments.

3 Type inmem to display all MATLAB function files that were used when the
function ran. If you want to see what MEX-files were used as well, specify
an additional output, as shown here:

[mfiles, mexfiles] = inmem

Note clear functions does not clear functions locked by mlock. If you
have locked functions, (which you can check using inmem), unlock them with
munlock, and then repeat step 1.

10-13

'IO Programming Tips

Dependent Functions, Built-Ins, Classes

For a much more detailed display of dependent function information, use the
depfun function. In addition to MATLAB function files, depfun shows which
built-ins and classes a particular function depends on.

10-14

Function Arguments

Function Arguments

In this section...

“Getting the Input and Output Arguments” on page 10-15
“Variable Numbers of Arguments” on page 10-15
“String or Numeric Arguments” on page 10-16

“Passing Arguments in a Structure” on page 10-16

“Passing Arguments in a Cell Array” on page 10-17

Getting the Input and Output Arguments

Use nargin and nargout to determine the number of input and output
arguments in a particular function call. Use nargchk and nargoutchk to
verify that your function is called with the required number of input and
output arguments.

function [x, y] = myplot(a, b, c, d)

disp(nargchk(2, 4, nargin)) % Allow 2 to 4 inputs
disp(nargoutchk(0, 2, nargout)) % Allow 0 to 2 outputs
x = plot(a, b);
if nargin == 4

y = myfun(c, d);
end

Variable Numbers of Arguments

You can call functions with fewer input and output arguments than you have
specified in the function definition, but not more. If you want to call a function
with a variable number of arguments, use the varargin and varargout
function parameters in the function definition.

This function returns the size vector and, optionally, individual dimensions:

function [s, varargout] = mysize(x)
nout = max(nargout, 1) - 1;

s = size(X);

for k = 1:nout

10-15

'IO Programming Tips

10-16

varargout(k) = {s(k)};
end

Try calling it with

[s, rows, cols] mysize(rand(4, 5))

String or Numeric Arguments

If you are passing only string arguments into a function, you can use
MATLAB command syntax. All arguments entered in command syntax are
interpreted as strings.

strcmp string1 stringi
ans =
1

When passing numeric arguments, it is best to use function syntax unless you
want the number passed as a string. The right-hand example below passes
the number 75 as the string, '75".

isnumeric(75) isnumeric 75
ans = ans =
1 0

For more information: See Command vs. Function Syntax in the MATLAB
Programming Fundamentals documentation.

Passing Arguments in a Structure

Instead of requiring an additional argument for every value you want to pass
in a function call, you can package them in a MATLAB structure and pass the
structure. Make each input you want to pass a separate field in the structure
argument, using descriptive names for the fields.

Structures allow you to change the number, contents, or order of the
arguments without having to modify the function. They can also be useful
when you have a number of functions that need similar information.

Function Arguments

Passing Arguments in a Cell Array

You can also group arguments into cell arrays. The disadvantage over
structures is that you do not have field names to describe each variable. The
advantage is that cell arrays are referenced by index, allowing you to loop

through a cell array and access each argument passed in or out of the function.

10-17

'IO Programming Tips

Program Development

In this section...

“Planning the Program” on page 10-18

“Using Pseudo-Code” on page 10-18

“Selecting the Right Data Structures” on page 10-18
“General Coding Practices” on page 10-19

“Naming a Function Uniquely” on page 10-19

“The Importance of Comments” on page 10-19
“Coding in Steps” on page 10-20

“Making Modifications in Steps” on page 10-20
“Functions with One Calling Function” on page 10-20

“Testing the Final Program” on page 10-20

Planning the Program

When planning how to write a program, take the problem you are trying
to solve and break it down into a series of smaller, independent tasks.
Implement each task as a separate function. Try to keep functions fairly
short, each having a single purpose.

Using Pseudo-Code

You may find it helpful to write the initial draft of your program in a
structured format using your own natural language. This pseudo-code is often
easier to think through, review, and modify than using a formal programming
language, yet it is easily translated into a programming language in the next
stage of development.

Selecting the Right Data Structures

Look at what classes and data structures are available to you in MATLAB and
determine which of those best fit your needs in storing and passing your data.

10-18

Program Development

For more information: see in the Programming Fundamentals
documentation.

General Coding Practices
A few suggested programming practices:

® Use descriptive function and variable names to make your code easier to
understand.
® Order subfunctions alphabetically in a file to make them easier to find.

® Precede each subfunction with a block of help text describing what that
subfunction does. This not only explains the subfunctions, but also helps
to visually separate them.

® Do not extend lines of code beyond the 80th column. Otherwise, it will be
hard to read when you print it out.

e Use full Handle Graphics property and value names. Abbreviated names
are often allowed, but can make your code unreadable. They also could be
incompatible in future releases of MATLAB.

Naming a Function Uniquely

To avoid choosing a name for a new function that might conflict with a name
already in use, check for any occurrences of the name using this command:

which -all functionname

For more information: See the which function reference page.

The Importance of Comments

Be sure to document your programs well to make it easier for you or someone
else to maintain them. Add comments generously, explaining each major
section and any smaller segments of code that are not obvious. You can add
a block of comments as shown here.

10-19

'IO Programming Tips

10-20

For more information: See Comments in the MATLAB Programming
Fundamentals documentation.

Coding in Steps

Do not try to write the entire program all at once. Write a portion of it, and
then test that piece out. When you have that part working the way you want,
then write the next piece, and so on. It is much easier to find programming
errors in a small piece of code than in a large program.

Making Modifications in Steps

When making modifications to a working program, do not make widespread
changes all at one time. It is better to make a few small changes, test and
debug, make a few more changes, and so on. Tracking down a difficult bug
in the small section that you have changed is much easier than trying to
find it in a huge block of new code.

Functions with One Calling Function

If you have a function that is called by only one other function, put it in the
same file as the calling function, making it a subfunction.

For more information: See “String Comparisons” on page 1-56 in the
MATLAB Programming Fundamentals documentation.

Testing the Final Program

One suggested practice for testing a new program is to step through the
program in the MATLAB debugger while keeping a record of each line that
gets executed on a printed copy of the program. Use different combinations of
inputs until you have observed that every line of code is executed at least once.

Debugging

Debugging

In this section...

“The MATLAB Debug Functions” on page 10-21

“More Debug Functions” on page 10-21

“The MATLAB Graphical Debugger” on page 10-22

“A Quick Way to Examine Variables” on page 10-22

“Setting Breakpoints from the Command Line” on page 10-22
“Finding Line Numbers to Set Breakpoints” on page 10-23
“Stopping Execution on an Error or Warning” on page 10-23
“Locating an Error from the Error Message” on page 10-23
“Using Warnings to Help Debug” on page 10-24

“Making Code Execution Visible” on page 10-24

“Debugging Scripts” on page 10-24

The MATLAB Debug Functions

For a brief description of the main debug functions in MATLAB, type

help debug

For more information: See Debugging Process and Features in the
MATLAB Desktop Tools and Development Environment documentation.

More Debug Functions

Other functions you may find useful in debugging are listed below.

Function Description

echo Display function or script code as it executes.
disp Display specified values or messages.
sprintf, Display formatted data of different types.
fprintf

10-21

'IO Programming Tips

10-22

Function Description

whos List variables in the workspace.

size Show array dimensions.

keyboard Interrupt program execution and allow input from
keyboard.

return Resume execution following a keyboard
interruption.

warning Display specified warning message.

MException Access information on the cause of an error.

lastwarn Return warning message that was last issued.

The MATLAB Graphical Debugger

Learn to use the MATLAB graphical debugger. You can view the function
and its calling functions as you debug, set and clear breakpoints, single-step
through the program, step into or over called functions, control visibility into
all workspaces, and find and replace strings in your files.

Start out by opening the file you want to debug using File > Open or the
open function. Use the debugging functions available on the toolbar and
pull-down menus to set breakpoints, run or step through the program, and
examine variables.

For more information: See Debugging Process and Features in the
MATLAB Desktop Tools and Development Environment documentation.

A Quick Way to Examine Variables

To see the value of a variable from the Editor/Debugger window, hold the
mouse cursor over the variable name for a second or two. You will see the
value of the selected variable displayed.

Setting Breakpoints from the Command Line

You can set breakpoints with dbstop in any of the following ways:

Debugging

Break at a specific file line number.

Break at the beginning of a specific subfunction.

Break at the first executable line in a file.

Break when a warning, or error, is generated.

Break if any infinite or NaN values are encountered.

For more information: See Setting Breakpoints in the MATLAB Desktop
Tools and Development Environment documentation.

Finding Line Numbers to Set Breakpoints

When debugging from the command line, a quick way to find line numbers for
setting breakpoints is to use dbtype. The dbtype function displays all or part
of the file, also numbering each line. To display delaunay.m, use

dbtype delaunay

To display only lines 35 through 41, use

dbtype delaunay 35:41

Stopping Execution on an Error or Warning

Use dbstop if error to stop program execution on any error and enter
debug mode. Use dbstop if warning to stop execution on any warning and
enter debug mode.

For more information: See “Debugging Process and Features” in the
MATLAB Desktop Tools and Development Environment documentation.

Locating an Error from the Error Message

Click on the underlined text in an error message, and MATLAB opens the file
being executed in its editor and places the cursor at the point of error.

For more information: See Finding Errors, Debugging, and Correcting

MATLAB Files in the MATLAB Desktop Tools and Development Environment
documentation.

10-23

'IO Programming Tips

10-24

Using Warnings to Help Debug

You can detect erroneous or unexpected behavior in your programs by
inserting warning messages that MATLAB will display under the conditions
you specify. See the section on Warning Control in the MATLAB Programming
Fundamentals documentation to find out how to selectively enable warnings.

For more information: See the warning function reference page.

Making Code Execution Visible

An easy way to see the end result of a particular line of code is to edit the
program and temporarily remove the terminating semicolon from that line.
Then, run your program and the evaluation of that statement is displayed
on the screen.

For more information: See Finding Errors, Debugging, and Correcting
MATLAB Files in the MATLAB Desktop Tools and Development Environment
documentation.

Debugging Scripts

Scripts store their variables in a workspace that is shared with the caller of
the script. So, when you debug a script from the command line, the script
uses variables from the base workspace. To avoid errors caused by workspace
sharing, type clear all before starting to debug your script to clear the
base workspace.

Variables

Variables

In this section...

“Rules for Variable Names” on page 10-25

“Making Sure Variable Names Are Valid” on page 10-25
“Do Not Use Function Names for Variables” on page 10-26
“Checking for Reserved Keywords” on page 10-26

“Avoid Using i and j for Variables” on page 10-27

“Avoid Overwriting Variables in Scripts” on page 10-27
“Persistent Variables” on page 10-27

“Protecting Persistent Variables” on page 10-27

“Global Variables” on page 10-28

Rules for Variable Names

Although variable names can be of any length, MATLAB uses only the first
N characters of the name, (where N is the number returned by the function
namelengthmax), and ignores the rest. Hence, it is important to make
each variable name unique in the first N characters to enable MATLAB to
distinguish variables. Also note that variable names are case sensitive.

N = namelengthmax
N =
63

For more information: See Naming Variables in the MATLAB
Programming Fundamentals documentation.

Making Sure Variable Names Are Valid

Before using a new variable name, you can check to see if it is valid with the
isvarname function. Note that isvarname does not consider names longer
than namelengthmax characters to be valid.

For example, the following name cannot be used for a variable since it begins
with a number.

10-25

'IO Programming Tips

10-26

isvarname 8thColumn
ans =
0

For more information: See Naming Variables in the MATLAB
Programming Fundamentals documentation.

Do Not Use Function Names for Variables

When naming a variable, make sure you are not using a name that is already
used as a function name. If you do define a variable with a function name,
you will not be able to call that function until you clear the variable from
memory. (If it is a MATLAB built-in function, then you will still be able to call
that function but you must do so using builtin.)

To test whether a proposed variable name is already used as a function
name, use

which -all name

For more information: See Potential Conflict with Function Names in the
MATLAB Programming Fundamentals documentation.

Checking for Reserved Keywords

MATLAB reserves certain keywords for its own use and does not allow you
to override them. Attempts to use these words may result in any one of a
number of error messages, some of which are shown here:

Error: Expected a variable, function, or constant, found "="
Error: "End of Input" expected, "case" found.

Error: Missing operator, comma, or semicolon.

Error: "identifier" expected, "=" found.

Use the iskeyword function with no input arguments to list all reserved
words.

Variables

Avoid Using i and j for Variables

MATLAB uses the characters i and j to represent imaginary units. Avoid
using i and j for variable names if you intend to use them in complex
arithmetic.

If you want to create a complex number without using i and j, you can use
the complex function.

Avoid Overwriting Variables in Scripts

MATLAB scripts store their variables in a workspace that is shared with
the caller of the script. When called from the command line, they share the
base workspace. When called from a function, they share that function’s
workspace. If you run a script that alters a variable that already exists in the
caller’s workspace, that variable is overwritten by the script.

For more information: See Scripts in the MATLAB Programming
Fundamentals documentation.

Persistent Variables

To get the equivalent of a static variable in MATLAB, use persistent.
When you declare a variable to be persistent within a function, its value is
retained in memory between calls to that function. Unlike global variables,
persistent variables are known only to the function in which they are
declared.

For more information: See Persistent Variables in the MATLAB
Programming Fundamentals documentation.

Protecting Persistent Variables

You can inadvertently clear persistent variables from memory by either
modifying the function in which the variables are defined, or by clearing the
function with one of the following commands:

clear all
clear functions

10-27

'IO Programming Tips

10-28

Locking the file in memory with mlock prevents any persistent variables
defined in the file from being reinitialized.

Global Variables

Use global variables sparingly. The global workspace is shared by all of
your functions and also by your interactive MATLAB session. The more
global variables you use, the greater the chances of unintentionally reusing a
variable name, thus leaving yourself open to having those variables change in
value unexpectedly. This can be a difficult bug to track down.

For more information: See Global Variables in the MATLAB Programming
Fundamentals documentation.

Strings

Strings

In this section...

“Creating Strings with Concatenation” on page 10-29
“Comparing Methods of Concatenation” on page 10-29
“Store Arrays of Strings in a Cell Array” on page 10-30
“Converting Between Strings and Cell Arrays” on page 10-30

“Search and Replace Using Regular Expressions” on page 10-30

Creating Strings with Concatenation

Strings are often created by concatenating smaller elements together (e.g.,
strings, values, etc.). Two common methods of concatenating are to use the
MATLAB concatenation operator ([]) or the sprintf function. The second
and third line below illustrate both of these methods. Both lines give the
same result:

numChars = 28;
s = ['There are ' int2str(numChars) ' characters here']
s = sprintf('There are %d characters here', numChars)

For more information: See “Creating Character Arrays” on page 1-35
and Converting from Numeric to String in the MATLAB Programming
Fundamentals documentation.

Comparing Methods of Concatenation

When building strings with concatenation, sprintf is often preferable to []
because

¢ [t is easier to read, especially when forming complicated expressions
¢ [t gives you more control over the output format

¢ It often executes more quickly

You can also concatenate using the strcat function, However, for simple
concatenations, sprintf and [] are faster.

10-29

'IO Programming Tips

10-30

Store Arrays of Strings in a Cell Array

It is usually best to store an array of strings in a cell array instead of a
character array, especially if the strings are of different lengths. Strings in
a character array must be of equal length, which often requires padding the
strings with blanks. This is not necessary when using a cell array of strings
that has no such requirement.

The cellRecord below does not require padding the strings with spaces:

cellRecord = {'Allison Jones'; 'Development'; 'Phoenix'};

For more information: See Cell Arrays of Strings in the MATLAB
Programming Fundamentals documentation.

Converting Between Strings and Cell Arrays

You can convert between standard character arrays and cell arrays of strings
using the cellstr and char functions:

charRecord = ['Allison Jones'; 'Development ';
'"Phoenix "1;
cellRecord = cellstr(charRecord);

Also, a number of the MATLAB string operations can be used with either
character arrays, or cell arrays, or both:

cellRecord2 = {'Brian Lewis'; 'Development'; 'Albuquerque'};
strcmp(charRecord, cellRecord2)
ans =

0

1

0

For more information: See Converting to a Cell Array of Strings and String
Comparisons in the MATLAB Programming Fundamentals documentation.

Search and Replace Using Regular Expressions

Using regular expressions in MATLAB offers a very versatile way of searching
for and replacing characters or phrases within a string. See the help on these
functions for more information.

Strings

Function Description

regexp Match regular expression.

regexpi Match regular expression, ignoring case.
regexprep Replace string using regular expression.

For more information: See “Regular Expressions” on page 2-57 in the
MATLAB Programming Fundamentals documentation.

10-31

'IO Programming Tips

Evaluating Expressions

10-32

In this section...

“Find Alternatives to Using eval” on page 10-32
“Assigning to a Series of Variables” on page 10-32
“Short-Circuit Logical Operators” on page 10-33

“Changing the Counter Variable within a for Loop” on page 10-33

Find Alternatives to Using eval

While the eval function can provide a convenient solution to certain
programming challenges, it is best to limit its use. The main reason is that
code that uses eval is often difficult to read and hard to debug. A second
reason is that eval statements cannot always be translated into C or C++
code by the MATLAB Compiler.

If you are evaluating a function, it is more efficient to use feval than eval.
The feval function is made specifically for this purpose and is optimized to
provide better performance.

For more information: See MATLAB Technical Note 1103, “What Is the
EVAL Function, When Should I Use It, and How Can I Avoid It?” at URL
http://www.mathworks.com/support/tech-notes/1100/1103.html.

Assigning to a Series of Variables

One common pattern for creating variables is to use a variable name suffixed
with a number (e.g., phase1, phase2, phase3, etc.). We recommend using a
cell array to build this type of variable name series, as it makes code more
readable and executes more quickly than some other methods. For example:

for k = 1:800
phase{k} = expression;
end

http://www.mathworks.com/support/tech-notes/1100/1103.html

Evaluating Expressions

Short-Circuit Logical Operators

MATLAB has logical AND and OR operators (&& and | |) that enable you to
partially evaluate, or short-circuit, logical expressions. Short-circuit operators
are useful when you want to evaluate a statement only when certain
conditions are satisfied.

In this example, MATLAB does not execute the function myfun unless the file
that defines myfun exists on the current path.

comp = (exist('myfun.m') == 2) && (myfun(x) >=y)

For more information: See “Short-Circuit Operators” on page 2-30 in the
MATLAB Programming Fundamentals documentation.

Changing the Counter Variable within a for Loop

You cannot change the value of the loop counter variable (e.g., the variable
k in the example below) in the body of a for loop. For example, this loop
executes just 10 times, even though k is set back to 1 on each iteration.

for k = 1:10
fprintf('Pass %d\n', k)
k =1;

end

Although MATLAB does allow you to use a variable of the same name as the
loop counter within a loop, this is not a recommended practice.

10-33

'IO Programming Tips

MATLAB Path

10-34

In this section...

“Precedence Rules” on page 10-34

“File Precedence” on page 10-35

“Adding a Folder to the Search Path” on page 10-35

“Handles to Functions Not on the Path” on page 10-35

“Making Toolbox File Changes Visible to MATLAB” on page 10-36
“Making Nontoolbox File Changes Visible to MATLAB” on page 10-37

“Change Notification on Windows” on page 10-37

Precedence Rules

When MATLAB is given a name to interpret, it determines its usage by
checking the name against each of the entities listed below, and in the order

shown:

1 Variable

2 Subfunction

3 Private function

4 (Class constructor

5 Overloaded method

6 MATLAB function file in the Current Folder

7 MATLAB function file on the path, or MATLAB built-in function

If you have two or more functions on the path that have the same name,
MATLAB selects the function closest to the beginning of the path string.

For more information: See Function Precedence Order in the MATLAB
Programming Fundamentals documentation.

MATLAB® Path

File Precedence

If you refer to a file by its filename only (leaving out the file extension), and
there is more than one file of this name in the folder, MATLAB selects the
file to use according to the following precedence:

1 MEX-file
2 MDL-file (Simulink model)
3 P-Code file

4 MATLAB function (.m) -file

For more information: See Multiple Implementation Types in the MATLAB
Programming Fundamentals documentation.

Adding a Folder to the Search Path

To add a folder to the search path, use either of the following:

¢ At the toolbar, select File > Set Path.

¢ At the command line, use the addpath function.

You can also add a folder and all of its subfolders in one operation by either of
these means. To do this from the command line, use genpath together with
addpath. The online help for the genpath function shows how to do this.

This example adds /control and all of its subfolders to the MATLAB path:
addpath(genpath('K:/toolbox/control'))
For more information: See Search Path in the MATLAB Desktop Tools and

Development Environment documentation.

Handles to Functions Not on the Path

You cannot create function handles to functions that are not on the MATLAB
path. But you can achieve essentially the same thing by creating the handles
through a script file placed in the same off-path folder as the functions. If

10-35

'IO Programming Tips

10-36

you then run the script, using run path/script, you will have created the
handles that you need.

For example,

1 Create a script in this off-path folder that constructs function handles and
assigns them to variables. That script might look something like this:

File E:/testdir/createFhandles.m
fhset = @setltems
fhsort = @sortlItems
fhdel = @deleteltem

2 Run the script from your Current Folder to create the function handles:

run E:/testdir/createFhandles

3 You can now execute one of the functions by means of its handle.

fhset(item, value)

Making Toolbox File Changes Visible to MATLAB

Unlike functions in user-supplied folders, MATLAB function files (and
MEX-files) in the matlabroot/toolbox folders are not time-stamp checked,
so MATLAB does not automatically see changes to them. If you modify one of
these files, and then rerun it, you may find that the behavior does not reflect
the changes that you made. This is most likely because MATLAB is still using
the previously loaded version of the file.

To force MATLAB to reload a function from disk, you need to explicitly clear
the function from memory using clear functionname. Note that there are
rare cases where clear will not have the desired effect, (for example, if the
file is locked, or if it is a class constructor and objects of the given class exist
In memory).

Similarly, MATLAB does not automatically detect the presence of new files in
matlabroot/toolbox folders. If you add (or remove) files from these folders,
use rehash toolbox to force MATLAB to see your changes. Note that if you
use the MATLAB Editor to create files, these steps are unnecessary, as the
Editor automatically informs MATLAB of such changes.

MATLAB® Path

Making Nontoolbox File Changes Visible to MATLAB

For functions outside of the toolbox folders, MATLAB sees the changes made
to these files by comparing timestamps and reloads any file that has changed
the next time you execute the corresponding function.

If MATLAB does not see the changes you make to one of these files, try
clearing the old copy of the function from memory using clear functionname.
You can verify that MATLAB has cleared the function using inmem to list all
functions currently loaded into memory.

Change Notification on Windows

If MATLAB, running on Windows, is unable to see new files or changes you
have made to an existing file, the problem may be related to operating system
change notification handles.

Type the following for more information:

help changeNotification
help changeNotificationAdvanced

10-37

'IO Programming Tips

Program Control

In this section...

“Using switch Versus if” on page 10-39
“MATLAB case Evaluates Strings” on page 10-39

“Implicit Break in switch-case” on page 10-39
“Variable Scope in a switch” on page 10-40
“Catching Errors with try-catch” on page 10-40
“Nested try-catch Blocks” on page 10-41

“Using break, continue, and return” on page 10-38

“Multiple Conditions in a case Statement” on page 10-39

“Forcing an Early Return from a Function” on page 10-41

Using break, continue, and return

It 1s easy to confuse the break, continue, and return functions as they are
similar in some ways. Make sure you use these functions appropriately.

Function

Where to Use It

Description

break

for or while loops

Exits the loop in which it
appears. In nested loops,
control passes to the next
outer loop.

continue

for or while loops

Skips any remaining
statements in the current
loop. Control passes to next
iteration of the same loop.

return

Anywhere

Immediately exits the
function in which it appears.
Control passes to the caller
of the function.

10-38

Program Control

Using switch Versus if

It is possible, but usually not advantageous, to implement switch-case
statements using if-elseif instead. See pros and cons in the table.

switch-case Statements if-elseif Statements

Easier to read. Can be difficult to read.

Can compare strings of different You need strcmp to compare strings
lengths. of different lengths.

Test for equality only. Test for equality or inequality.

MATLAB case Evaluates Strings

A useful difference between switch-case statements in MATLAB and C is
that you can specify string values in MATLAB case statements, which you
cannot do in C.

switch(method)
case 'linear'
disp('Method is linear')
case 'cubic'
disp('Method is cubic')
end

Multiple Conditions in a case Statement

You can test against more than one condition with switch. The first case
below tests for either a linear or bilinear method by using a cell array
in the case statement.

switch(method)
case {'linear', 'bilinear'}
disp('Method is linear or bilinear')
case (<and so on>)
end

Implicit Break in switch-case

In C, if you do not end each case with a break statement, code execution
falls through to the following case. In MATLAB, case statements do not fall

10-39

'IO Programming Tips

through; only one case may execute. Using break within a case statement is
not only unnecessary, it is also invalid and generates a warning.

In this example, if result is 52, only the first disp statement executes, even
though the second is also a valid match:

switch(result)
case 52
disp('result is 52')
case {52, 78}
disp('result is 52 or 78')
end

Variable Scope in a switch

Since MATLAB executes only one case of any switch statement, variables
defined within one case are not known in the other cases of that switch
statement. The same holds true for if-elseif statements.

In these examples, you get an error when choice equals 2, because x is

undefined.
-- SWITCH-CASE -- -- IF-ELSEIF --
switch choice
case 1 if choice == 1
X = -pi:0.01:pi; X = -pi:0.01:pi;
case 2 elseif choice ==
plot(x, sin(x)); plot(x, sin(x));
end end

Catching Errors with try-catch

When you have statements in your code that could possibly generate
unwanted results, put those statements into a try-catch block that will catch
any errors and handle them appropriately.

The example below shows a try-catch block within a function that multiplies
two matrices. If a statement in the try segment of the block fails, control
passes to the catch segment. In this case, the catch statements check the
error message that was issued (returned in MException object, err) and
respond appropriately:

10-40

Program Control

try
X=A*B
catch err
errmsg = err.message;
if(strfind(errmsg, 'Inner matrix dimensions'))
disp('** Wrong dimensions for matrix multiply')
end

For more information: See “The try-catch Statement” on page 6-17 in the
MATLAB Programming Fundamentals documentation.

Nested try-catch Blocks

You can also nest try-catch blocks, as shown here. You can use this to
attempt to recover from an error caught in the first try section:

try
statement1 % Try to execute statementi
catch
try
statement2 % Attempt to recover from error
catch
disp 'Operation failed' % Handle the error
end
end

Forcing an Early Return from a Function

To force an early return from a function, place a return statement in the
function at the point where you want to exit. For example,

if <done>
return
end

10-41

'IO Programming Tips

Save and Load

10-42

In this section...

“Saving Data from the Workspace” on page 10-42

“Loading Data into the Workspace” on page 10-42
“Viewing Variables in a MAT-File” on page 10-43

“Appending to a MAT-File” on page 10-43

“Save and Load on Startup or Quit” on page 10-44

“Saving to an ASCII File” on page 10-44

Saving Data from the Workspace

To save data from your workspace, you can do any of the following:

¢ Copy from the MATLAB Command Window and paste into a text file.

® Record part of your session in a diary file, and then edit the file in a text
editor.

® Save to a binary or ASCII file using the save function.

® Save spreadsheet, scientific, image, or audio data with appropriate
function.

® Save to a file using low-level file I/O functions (fwrite, fprintf, ...).
For more information: See Saving the Current Workspace in the MATLAB
Desktop Tools and Development Environment documentation, and “Writing

to Text Data Files with Low-Level I/0” in the MATLAB Data Import and
Export documentation.

Loading Data into the Workspace

Similarly, to load new or saved data into the workspace, you can do any of
the following:

® Enter or paste data at the command line.

® (Create a script file to initialize large matrices or data structures.

Save and Load

® Read a binary or ASCII file using load.

® Load spreadsheet, scientific, image, or audio data with appropriate
function.

¢ Load from a file using low-level file I/O functions (fread, fscanf, ...).
For more information: See Loading a Saved Workspace and Importing
Data in the Desktop Tools and Development Environment documentation,

and “Importing Data” in the MATLAB Programming Fundamentals
documentation.

Viewing Variables in a MAT-File

To see what variables are saved in a MAT-file, use who or whos as shown
here (the .mat extension is not required). who returns a cell array and whos
returns a structure array.

mydataVariables = who('-file', 'mydata.mat');

Appending to a MAT-File

To save additional variables to an existing MAT-file, use

save matfilename -append

Any variables you save that do not yet exist in the MAT-file are added to
the file. Any variables you save that already exist in the MAT-file overwrite
the old values.

Note Saving with the -append switch does not append additional elements to
an array that is already saved in a MAT-file. See the example below.

In this example, the second save operation does not concatenate new elements
to vector A, (making Aequalto [1 2 3 4 5 6 7 8]) in the MAT-file. Instead,
it replaces the 5 element vector, A, with a 3 element vector, also retaining all
other variables that were stored on the first save operation.

A=1[12345]; B = 12.5; C = rand(4);
save savefile;

10-43

'IO Programming Tips

10-44

A=1[67 8];
save savefile A -append;

Save and Load on Startup or Quit

You can automatically save your variables at the end of each MATLAB session
by creating a finish.m file to save the contents of your base workspace every
time you quit MATLAB. Load these variables back into your workspace at
the beginning of each session by creating a startup.m file that uses the load
function to load variables from your MAT-file.

For more information: See the startup and finish function reference
pages.

Saving to an ASCII File

When you save matrix data to an ASCII file using save -ascii, MATLAB
combines the individual matrices into one collection of numbers. Variable
names are not saved. If this is not acceptable for your application, use
fprintf to store your data instead.

For more information: See “Writing to Delimited Data Files”.

Files and Filenames

Files and Filenames

In this section...

“Naming Functions” on page 10-45

“Naming Other Files” on page 10-45

“Passing Filenames as Arguments” on page 10-46
“Passing Filenames to ASCII Files” on page 10-46
“Determining Filenames at Run-Time” on page 10-46

“Returning the Size of a File” on page 10-46

Naming Functions

Files that define MATLAB functions must start with an alphabetic character,
may contain any alphanumeric characters or underscores, and must be no
longer than the maximum allowed file name length (returned by the function

namelengthmax).
N = namelengthmax
N =
63

Since variables must obey similar rules, you can use the isvarname function
to check whether a filename (minus its .m file extension) is valid for a
MATLAB function file.

isvarname mfilename

Naming Other Files

The names of other files that MATLAB interacts with (e.g., MAT, MEX, and
MDL-files) follow the same rules as the MATLAB function files, but may
be of any length.

Depending on your operating system, you may be able to include certain

nonalphanumeric characters in your filenames. Check your operating system
manual for information on valid filename restrictions.

10-45

'IO Programming Tips

10-46

Passing Filenames as Arguments

In MATLAB commands, you can specify a filename argument using the
MATLAB command or function syntax. For example, either of the following
are acceptable. (The .mat file extension is optional for save and load).

load mydata.mat % Command syntax
load('mydata.mat') % Function syntax

If you assign the output to a variable, you must use the function syntax.

savedData = load('mydata.mat')

Passing Filenames to ASCII Files
ASCII files are specified as follows. Here, the file extension is required.

load mydata.dat -ascii % Command syntax
load('mydata.dat','-ascii') % Function syntax

Determining Filenames at Run-Time

There are several ways that your function code can work on specific files
without you having to hardcode their filenames into the program. You can

e Pass the filename in as an argument

function myfun(datafile)
® Prompt for the filename using the input function

filename = input('Enter name of file: ', 's');
® Browse for the file using the uigetfile function

[filename, pathname] =
uigetfile('*.mat', 'Select MAT-file');

For more information: See the input and uigetfile function reference

pages.

Returning the Size of a File
Two ways to have your program determine the size of a file are shown here.

Files and Filenames

-- METHOD #1 -- -- METHOD #2 --
s = dir('myfile.dat'); fid = fopen('myfile.dat');
filesize = s.bytes fseek(fid, 0, 'eof');
filesize = ftell(fid)
fclose(fid);

The dir function also returns the filename (s.name), last modification date
(s.date), and whether or not it is a folder (s.isdir).

(The second method requires read access to the file.)

For more information: See the fopen, fseek, ftell, and fclose function
reference pages.

10-47

'IO Programming Tips

Input/Output

10-48

In this section...

“File I/O Function Overview” on page 10-48
“Common I/O Functions” on page 10-48

“Readable File Formats” on page 10-48

“Using the Import Wizard” on page 10-49

“Loading Mixed Format Data” on page 10-49
“Reading Files with Different Formats” on page 10-49

“Interactive Input into Your Program” on page 10-50

For more information and examples on importing and exporting data, see
MATLAB Data Import and Export:

File 1/0O Function Overview

For a good overview of MATLAB file I/O functions, use the online “Functions
— Categorical List” reference. In the Help browser Contents, select
MATLAB > Functions — Categorical List, and then click File I/0.

Common 1/0O Functions

The most commonly used, high-level, file I/O functions in MATLAB are save
and load. For help on these, type doc save or doc load.

Functions for I/0 to text files with delimited values are textscan, dlmread,
dlmwrite.

For more information: See Text Files in the MATLAB “Functions —
Categorical List” reference documentation.

Readable File Formats

Type doc fileformats to see a list of file formats that MATLAB can read,
along with the associated MATLAB functions.

Input/Qutput

Using the Import Wizard

A quick method of importing text or binary data from a file (e.g., Excel files)
is to use the MATLAB Import Wizard. Open the Import Wizard with the
command, uiimport filename or by selecting File > Import Data at the
Command Window.

Specify or browse for the file containing the data you want to import and
you will see a preview of what the file contains. Select the data you want
and click Finish.

For more information: See “Tips for Using the Import Wizard” in the
MATLAB Data Import and Export documentation.

Loading Mixed Format Data

To load data that is in mixed formats, use textscan instead of load. The
textscan function lets you specify the format of each piece of data.

If the first line of file mydata.dat is

Sally 12.34 45

Read the first line of the file as a free format file using the % format:

fid = fopen('mydata.dat’');
c = textscan(fid, '%s %f %d', 1);
fclose(fid);

returns

Cc =
{1x1 cell} [12.3400] [45]

Reading Files with Different Formats

Attempting to read data from a file that was generated on a different platform
may result in an error because the binary formats of the platforms may differ.
Using the fopen function, you can specify a machine format when you open
the file to avoid these errors.

10-49

'IO Programming Tips

10-50

Interactive Input into Your Program

Your program can accept interactive input from users during execution. Use
the input function to prompt the user for input, and then read in a response.
When executed, input causes the program to display your prompt, pause

while a response is entered, and then resume when the Enter key is pressed.

Starting MATLAB®

Starting MATLAB

Getting MATLAB to Start Up Faster

Here are some things that you can do to make MATLAB start up faster.

e Make sure toolbox path caching is enabled.
® Make sure that the system on which MATLAB is running has enough RAM.
® Choose only the windows you need in the MATLAB desktop.

® (Close the Help browser before exiting MATLAB. When you start your next
session, MATLAB will not open the Help browser, and thus will start faster.

o [f disconnected from the network, check the LM_LICENSE_FILE variable.
See http://www.mathworks.com/support/solutions/data/1-17VEB.html for a
more detailed explanation.

For more information: See Toolbox Path Caching in MATLAB in the
MATLAB Desktop Tools and Development Environment documentation.

10-51

http://www.mathworks.com/support/solutions/data/1-17VEB.html

'IO Programming Tips

Operating System Compatibility

10-52

In this section...
“Executing O/S Commands from MATLAB” on page 10-52

“Searching Text with grep” on page 10-52
“Constructing Paths and Filenames” on page 10-52

“Finding the MATLAB Root Folder” on page 10-53

“Temporary Directories and Filenames” on page 10-53

Executing O/S Commands from MATLAB

To execute a command from your operating system prompt without having to
exit MATLAB, precede the command with the MATLAB ! operator.

On Windows, you can add an ampersand (&) to the end of the line to make the
output appear in a separate window.

For more information: See Running External Programs in the MATLAB
Desktop Tools and Development Environment documentation, and the system
and dos function reference pages.

Searching Text with grep

grep is a powerful tool for performing text searches in files on UNIX systems.
To grep from within MATLAB, precede the command with an exclamation

point (!grep).

For example, to search for the word warning in all MATLAB function files of
the Current Folder, ignoring case, you would use

!grep -i 'warning' *.m

Constructing Paths and Filenames

Use the fullfile function to construct path names and filenames rather
than entering them as strings into your programs. In this way, you always
get the correct path specification, regardless of which operating system you
are using at the time.

Operating System Compatibility

Finding the MATLAB Root Folder

The matlabroot function returns the location of the MATLAB installation
on your system. Use matlabroot to create a path to MATLAB and toolbox
folders that does not depend on a specific platform or MATLAB version.

The following example uses matlabroot with fullfile to return a
platform-independent path to the general toolbox folder:

fullfile(matlabroot, 'toolbox', 'matlab’', 'general')

Temporary Directories and Filenames

If you need to locate the folder on your system that has been designated to
hold temporary files, use the tempdir function. tempdir returns a string
that specifies the path to this folder.

To create a new file in this folder, use the tempname function. tempname
returns a string that specifies the path to the temporary file folder, plus a

unique filename.

For example, to store some data in a temporary file, you might issue the
following command first.

fid = fopen(tempname, 'w');

10-53

'IO Programming Tips

Demos

10-54

Demos Available with MATLAB

MATLAB comes with a wide array of visual demonstrations to help you see
the extent of what you can do with the product. To start running any of the
demos, simply type demo at the MATLAB command prompt. Demos cover the
following major areas:

e MATLAB

® Toolboxes

e Simulink

* Blocksets

¢ Real-Time Workshop®

e Stateflow®

For more information: See Demos in the Help Browser in the MATLAB

Desktop Tools and Development Environment documentation, and the demo
function reference page.

For More Information

For More Information

In this section...

“Current CSSM” on page 10-55

“Archived CSSM” on page 10-55

“MATLAB Technical Support” on page 10-55

“Tech Notes” on page 10-55

“MATLAB Central” on page 10-55

“MATLAB Newsletters (Digest, News & Notes)” on page 10-55
“MATLAB Documentation” on page 10-56

“MATLAB Index of Examples” on page 10-56

Current CSSM

http://www.mathworks.com/matlabcentral/newsreader

Archived CSSM

http://mathforum.org/kb/forum.jspa?forumID=80

MATLAB Technical Support

http://www.mathworks.com/support/

Tech Notes

http://www.mathworks.com/support/tech-notes/list_all.html

MATLAB Central

http://www.mathworks.com/matlabcentral/

MATLAB Newsletters (Digest, News & Notes)

http://www.mathworks.com/company/newsletters/index.html

10-55

http://www.mathworks.com/matlabcentral/newsreader
http://mathforum.org/kb/forum.jspa?forumID=80
http://www.mathworks.com/support/
http://www.mathworks.com/support/tech-notes/list_all.html
http://www.mathworks.com/matlabcentral/
http://www.mathworks.com/company/newsletters/index.html

'IO Programming Tips

MATLAB Documentation

http://www.mathworks.com/access/helpdesk/help/helpdesk.html

MATLAB Index of Examples

http://www.mathworks.com/access/helpdesk/help/techdoc/demo_example.shtml

10-56

http://www.mathworks.com/access/helpdesk/help/helpdesk.html
http://www.mathworks.com/access/helpdesk/help/techdoc/demo_example.shtml

Symbols and Numerics

symbol
for constructing a character array 2-129
() symbol
for indexing into an array 2-127
for specifying function input
arguments 2-127
[1 symbol
for argument placeholder 2-131
for concatenating arrays 2-131
for constructing an array 2-131
for specifying function return values 2-131
{ } symbol
for constructing a cell array 2-123
for indexing into a cell array 2-123
! symbol
for entering a shell escape function 2-126
% symbol
for specifying character conversions 2-127
for writing single-line comments 2-127
for writing the H1 help line 3-13
* symbol
for filename wildcards 2-120
, symbol
for separating array indices 2-122
for separating array row elements 2-122
for separating input or output
arguments 2-123
for separating MATLAB commands 2-123
. symbol
decimal point 2-124
for defining a structure field 2-124
for specifying object methods 2-124
: symbol
for converting to a column vector 2-122
for generating a numeric sequence 2-121
for preserving array shape on
assignment 2-122
for specifying an indexing range 2-122
; symbol

for separating rows of an array 2-128

for suppressing command output 2-129
@ symbol

for class folders 2-121

for constructing function handles 2-120
.() symbol

for creating a dynamic structure field 2-126
%{ and %} symbols

for writing multiple-line comments 2-128

. symbol
for referring to a parent folder 2-124
. symbol
for continuing a command line 2-125

A

accuracy of calculations 2-20
addition operator 2-22
and (function equivalent for &) 2-26
anonymous functions 4-3
changing variables 4-9
constructing 4-3
evaluating variables 4-8
in cell arrays 4-6
multiple anonymous functions 4-13
passing a function to quad 4-12
using space characters in 4-6
with no input arguments 4-5
answer, assigned to ans 2-20
arguments
checking number of 3-51
function 3-12
memory requirements 9-6
order in argument list 3-51
order of outputs 3-53
parsing 3-60
passing 3-31
passing variable number 3-49
to nested functions 3-53
arithmetic operators 2-22

Index-1

Index

array headers

memory requirements 9-5
arrays

cell array of strings 1-40

copying 9-3

of strings 1-36
assert

formatting strings 1-42
assignment statements

local and global variables 2-16

backtrace mode
warning control 6-32
base (numeric), converting 1-62
base date 2-51
binary from decimal conversion 1-62
blanks
finding in string arrays 1-58
built-in functions 3-82
forcing a built-in call 3-83
identifying 3-83

C

caching

MATLAB folder 3-17
callback functions

creating 7-15

specifying 7-17
calling context 3-22
calling MATLAB® functions

storing as pseudocode 3-7
case conversion 1-64 to 1-65
cell arrays 1-101

creating 1-103

functions 1-124

of strings 1-40

comparing strings 1-57

Index-2

functions 1-41
preallocating 8-5
with anonymous function elements 4-6

character arrays

categorizing characters of 1-58
comparing 1-56

comparing values on cell arrays 1-57
conversion 1-60

converting to cell arrays 1-40
converting to numeric 1-62
creating 1-35

delimiting character 1-60
evaluating 2-6

finding a substring 1-59
functions 1-65

functions that create 1-64
functions that modify 1-64

in cell arrays 1-40

scalar 1-58

searching and replacing 1-59
searching or comparing 1-65
token 1-60

two-dimensional 1-36

using relational operators on 1-58

characters

conversion, in format specification
string 1-48

corresponding ASCII values 1-62

finding in string 1-58

characters and strings 1-35
classes 1-2

cell arrays 1-101

cell arrays of strings 1-40

combining unlike classes 1-165

complex numbers 1-20

dates and times 2-50

determining 1-65

floating point 1-10
double-precision 1-11
single-precision 1-11

Index

infinity 1-21
integers 1-6
logical 1-29
NaN 1-22
numeric 1-6
precedence 1-165
classes, Map 1-150 to 1-151
methods 1-153
properties 1-152
classes, matlab
overview 1-171
clear 3-36 9-12
comma-separated lists 2-33
assigning output from 2-35
assigning to 2-36
FFT example 2-39
generating from cell array 2-33
generating from structure 2-34
usage 2-37
concatenation 2-38
constructing arrays 2-37
displaying arrays 2-38
function call arguments 2-38
function return values 2-39
command/function duality 2-5 3-27
comments
in code 3-14
in scripts and functions 3-11
comparing
strings 1-56
complex arrays
memory requirements 9-7
complex conjugate transpose operator 2-22
complex number functions 1-27
complex numbers 1-20
creating 1-20
computational functions
in file 3-11
computer 2-20
computer type 2-20

concatenation
of strings 10-29
of unlike data types 1-165
conditional statements 3-51
conflicts, naming 2-13
containers, Map 1-150
concatenating 1-159
constructing objects of 1-153
examining contents of 1-156
mapping to different types 1-163
modifying a copy of 1-162
modifying keys 1-162
modifying values 1-161
reading from 1-157
removing keys and values 1-161
writing to 1-158
Contents.m file 3-18
control statements
break 2-48
case 2-43
catch 2-49
conditional control 2-41
continue 2-47
else 2-41
elseif 2-41
error control 2-48
for 2-45
if 2-41
loop control 2-45
otherwise 2-43
program termination 2-49
return 2-49
switch 2-43
try 2-49
while 2-46
conversion characters in format specification
string 1-48
converting
cases of strings 1-64 to 1-65
dates 2-50

Index-3

Index

numbers 1-60 conversions 2-52
numeric to string 1-60 handling and converting 2-50
string to numeric 1-62 number 2-51
strings 1-60 string, vector of input 2-53
converting numeric and string classes 1-66 dates and times 2-50
converting numeric and string data types 1-66 datestr 2-52
converting numeric to string 1-60 datevec 2-52
converting string to numeric 1-62 debugging
cos 3-21 errors and warnings 6-35
cputime decimal representation
versus tic and toc 8-3 to binary 1-62
creating to hexadecimal 1-62
cell array 1-103 delaying program execution
strings 1-35 using timers 7-2
timer objects 7-5 delimiter in string 1-60
division operators
D left division 2-22
o matrix left division 2-22
data organization matrix right division 2-22
structure arrays 1-91 right division 2-22
data types 1-2 double-precision matrix 1-3 1-6
cell arrays 1-101 duality, command/function 2-5 3-27
cell arrays of strings 1-40 dynamic field names in structure arrays 1-77
complex numbers 1-20 dynamic regular expressions 2-96

dates and times 2-50
determining 1-65

floating point 1-10 E
double-precision 1-11 editor
single-precision 1-11 accessing 3-16
infinity 1-21 for creating files 3-16
integers 1-6 element-by-element organization for
logical 1-29 structures 1-94
NaN 1-22 else, elseif 2-42
numeric 1-6 empty arrays
precedence 1-165 and if statement 2-42
date 2-54 and relational operators 2-24
date and time functions 2-55 and while loops 2-47
datenum 2-52 eps 2-20
dates epsilon 2-20
base 2-51 equal to operator 2-23

Index-4

Index

error 3-23
formatting strings 1-42
error handling
debugging 6-35
escape characters
in format specification string 1-44
evaluating
string containing MATLAB expression 2-6
examples
checking number of function arguments 3-51
for 2-45
function 3-23
if 2-41
script 3-21
switch 2-44
vectorization 8-8
while 2-47
expressions
involving empty arrays 2-24
most recent answer 2-20
scalar expansion with 2-23
external program, running from MATLAB 2-7

F

field names
dynamic 1-77
filenames
wildcards 2-120
files
comments 3-14
contents 3-10
creating with text editor 3-16
kinds 3-9
naming 3-9
overview 3-10
find function
and subscripting 2-28
finding
substring within a string 1-59

floating point 1-10
floating point, double-precision 1-11

converting to 1-12

creating 1-11

maximum and minimum values 1-14
floating point, single-precision 1-11

converting to 1-13

creating 1-12

maximum and minimum values 1-15
floating-point functions 1-26
floating-point numbers

largest 2-20

smallest 2-20
floating-point relative accuracy 2-20
flow control

break 2-48

case 2-43

catch 2-49

conditional control 2-41

continue 2-47

else 2-41

elseif 2-41

error control 2-48

for 2-45

if 2-41

loop control 2-45

otherwise 2-43

program termination 2-49

return 2-49

switch 2-43

try 2-49

while 2-46
folders

Contents.m file 3-18

help for 3-18

MATLAB

caching 3-17

private functions for 4-35
for

example 2-45

Index-5

Index

indexing 2-46
nested 2-46
syntax 2-45

format for numeric values 1-23
formatting strings 1-42

field width 1-50

flags 1-50

format operator 1-46
precision 1-49

setting field width 1-52 1-54
setting precision 1-52 1-54
subtype 1-49

using identifiers 1-54

value identifiers 1-52

fprintf

formatting strings 1-42

function calls

memory requirements 9-6

function definition line

for subfunction 4-33
in an file 3-10
syntax 3-11

function handles

example 1-136

for nested functions 4-21
maximum name length 1-128
naming 1-128

operations on 1-148
overview of 1-127

function types

overloaded 4-37

function workspace 3-22
functions 3-81

Index-6

arguments
passing variable number of 3-49
body 3-11 3-14
built-in 3-82
forcing a built-in call 3-83
identifying 3-83
calling

command syntax 3-28
function syntax 3-30
passing arguments 3-30
calling context 3-22
cell arrays 1-124
cell arrays of strings 1-41
character arrays 1-65
clearing from memory 3-36
comments 3-11
comparing character arrays 1-65
complex number 1-27
date and time 2-55
example 3-23
floating-point 1-26
identifying 3-81
infinity 1-27
integer 1-26
logical array 1-32
modifying character arrays 1-64
multiple output arguments 3-12
naming
conflict with variable names 2-13
NaN 1-27
numeric and string conversion 1-66
numeric to string conversion 1-60
output formatting 1-28
overloaded 3-83
primary 4-33
searching character arrays 1-65
shadowed 2-13
storing as pseudocode 3-7
string to numeric conversion 1-62
struct arrays 1-98
that determine data type 1-65
type identification 1-28
types of 3-23
anonymous 4-3
nested 4-16
overloaded 4-37
primary 4-15

Index

private 4-35
subfunctions 4-33

G

global variables 2-9
alternatives 2-11
creating 2-10
displaying 2-10
suggestions for use 2-10
greater than operator 2-23
greater than or equal to operator 2-23

H

H1 line 3-10 3-13
and help command 3-10
and lookfor command 3-10
help
and H1 line 3-10
file 3-13
help text 3-10
hexadecimal, converting from decimal 1-62

|
if
and empty arrays 2-42
example 2-41
nested 2-42
imaginary unit 2-20
indexing
for loops 2-46
Inf 2-20
infinity 1-21
functions 1-27
represented in MATLAB 2-20
inputParser class
arguments that default 3-70
building the input scheme 3-63
case-sensitive matching 3-76

defined 3-60
handling unmatched arguments 3-71
parsing parameters 3-68
passing arguments in a structure 3-73
integer functions 1-26
integers 1-6
creating 1-7
largest system can represent 2-20
smallest system can represent 2-20
intmax 2-20
intmin 2-20

K

keywords 2-19
checking for 10-26

L

large data sets
memory usage in array storage 9-3
memory usage in function calls 9-17
less than operator 2-23
less than or equal to operator 2-23
load 9-12
local variables 2-8
logical array functions 1-32
logical class 1-29
logical data types 1-29
logical expressions
and subscripting 2-28
logical operators 2-24
bit-wise 2-29
elementwise 2-25
short-circuit 2-30
lookfor 3-10 3-13
and H1 line 3-10
loops
for 2-45
while 2-46

Index-7

Index

M for sparse matrices 9-7
Map class 1-150 to 1-151 message identifiers
constructing objects of 1-153 using with warnings 6-26
methods 1-153 methods
properties 1-152 determining which is called 3-39
Map objects 1-150 multiple conditions for switch 2-44
concatenating 1-159 multiplication operators
constructing 1-153 matrix multiplication 2-22
examining contents of 1-156 multiplication 2-22
mapping to different types 1-163
modifying a copy of 1-162 N

modifying keys 1-162
modifying values 1-161

reading from 1-157

removing keys and values 1-161
writing to 1-158

names
superseding 4-34

naming conflicts 2-13

NaN 1-22 2-20
functions 1-27

MATE?]iammin logical operations on 1-22
b gfjles 3.9g nargin 3-51

checking input arguments 3-51
in nested functions 3-53
nargout 3-51
checking output arguments 3-51
in nested functions 3-53
nested functions 4-16
creating 4-16
example — creating a function handle 4-27
example — function-generating
functions 4-29
passing optional arguments 3-53
separate variable instances 4-25
using function handles with 4-21
variable scope in 4-19
nesting
for loops 2-46
if statements 2-42
newlines in string arrays 1-58
not (function equivalent for ~) 2-26
not a number (NaN) 1-22
not equal to operator 2-23

scripts 3-21

version 2-20
matrices

double-precision 1-3 1-6

for loop index 2-46

See also matrices 2-46

single-precision 1-3 1-6
memory

function workspace 3-22

making efficient use of 9-2

management 9-12

Out of Memory message 9-23
memory requirements

array headers 9-5

for array allocation 9-2

for complex arrays 9-7

for copying arrays 9-3

for creating and modifying arrays 9-2

for handling variables in 9-2

for numeric arrays 9-7

for passing arguments 9-6

Index-8

Index

Not-a-Number 2-20
now 2-54
number of arguments 3-51
numbers
date 2-51
time 2-51
numeric arrays
memory requirements 9-7
numeric classes 1-6
conversion functions 1-66
converting to char 1-60
setting display format 1-23
numeric data types 1-6
conversion functions 1-66
setting display format 1-23
numeric to string conversion
functions 1-60

o

objects
definitions of 5-2
key concepts 5-8
online help 3-13
operator precedence 2-31
overriding 2-32
operators
addition 2-22
arithmetic 2-22
categories 2-22
colon 2-22
complex conjugate transpose 2-22
equal to 2-23
greater than 2-23
greater than or equal to 2-23
left division 2-22
less than 2-23
less than or equal to 2-23
logical 2-24
bit-wise 2-29

elementwise 2-25
short-circuit 2-30
matrix left division 2-22
matrix multiplication 2-22
matrix power 2-22
matrix right division 2-22
multiplication 2-22
not equal to 2-23
power 2-22
relational 2-23
right division 2-22
subtraction 2-22
transpose 2-22
unary minus 2-22
unary plus 2-22
optimization
preallocation, array 8-4
vectorization 8-8
or (function equivalent for |) 2-26
organizing data
structure arrays 1-91
Out of Memory message 9-23
output arguments 3-12
order of 3-53
output formatting functions 1-28
overloaded functions 3-83 4-37

P

pack 9-12
packages

use in references 5-11
parentheses

for input arguments 3-12

overriding operator precedence with 2-32
parsing input arguments 3-60
percent sign (comments) 3-14
performance

analyzing 8-2
persistent variables 2-11

Index-9

Index

initializing 2-12
pi 2-20
plane organization for structures 1-93
polar 3-22
power operators
matrix power 2-22
power 2-22
preallocation
arrays 8-4
cell array 8-5
precedence
of class 1-165
of data types 1-165
operator 2-31
overriding 2-32
primary functions 4-15
private folder 4-35
private functions 4-35
precedence of when calling 3-38
program control
break 2-48
case 2-43
catch 2-49
conditional control 2-41
continue 2-47
else 2-41
elseif 2-41
error control 2-48
for 2-45
if 2-41
loop control 2-45
otherwise 2-43
program termination 2-49
return 2-49
switch 2-43
try 2-49
while 2-46
program files
creating

in MATLAB folder 3-17

Index-10

primary function 4-15

subfunction 4-33

superseding existing names 4-34
programs

running external 2-7
pseudocode 3-7

Q

quit 9-12

realmax 2-20
realmin 2-20
regexp 2-111
regexpi 2-111
regexprep 2-111
regexptranslate 2-111
regular expression operators
character representation
alarm character (\a) 2-73
backslash character (\\) 2-73 2-113
backspace character (\b) 2-73
carriage return character (\r) 2-73
dollar sign (\$) 2-73
form feed character (\f) 2-73
hexadecimal character (\x) 2-73
horizontal tab character (\t) 2-73
literal character (\char) 2-73
new line character (\n) 2-73
octal character (\o) 2-73
vertical tab character (\v) 2-73
character types
match alphanumeric character (\w) 2-72
match any character (period) 2-71
match any characters but these
([*elc2e3]) 2-70
match any of these characters
([c1c2ce3]) 2-72

Index

match characters in this range match expr2, if preceded by exprl
([e1-c2]) 2-72 (exprl(?<=expr2)) 2-81
match digit character (\d) 2-73 operator summary 2-112
match nonalphanumeric character quantifiers
W) 2-70 lazy quantifier (quant?) 2-87
match nondigit character (\D) 2-70 match O or 1 instance (expr?) 2-85
match nonwhitespace character match O or more instances (expr*) 2-85
(\S) 2-70 match 1 or more instances (expr+) 2-86
match whitespace character (\s) 2-72 match at least m instances
conditional operators (expr{m,}) 2-84
if condition, match expr match m to n instances (expr{m,n}) 2-86
((?(condition)expr)) 2-94 2-116 match n instances (expr{n}) 2-84
dynamic expressions token operators
pattern matching functions 2-100 conditional with named token
pattern matching scripts 2-101 ((?(name)s1|s2)) 2-92
replacement expressions 2-99 create named token
string replacement functions 2-103 ((?<name>expr)) 2-92
logical operators create unnamed token ((expr)) 2-88
atomic group ((?>expr)) 2-74 give name to token
comment (?#expr) 2-76 ((?<name>expr))) 2-92
grouping and capture (expr) 2-74 if token, match exprl, else expr2
grouping only (?:expr) 2-75 ((?(token)exprl | expr2)) 2-94
match exact word (\<expr\>) 2-78 match named token (\k<name>) 2-92
match exprl or expr2 (exprl | expr2) 2-75 match Nth token (\N) 2-88
match if expression begins string replace Nth token ($N) 2-88
(“expr) 2-77 replace Nth token (N) 2-88
match if expression begins word replace with named token
(\<expr) 2-77 (?<name>) 2-92
match if expression ends string regular expressions
(expr$) 2-77 character representation 2-73
match if expression ends word character types 2-69
(expr\>) 2-77 conditional expressions 2-94
noncapturing group ((?:expr)) 2-74 dynamic expressions 2-96
lookaround operators example 2-98
match exprl, if followed by expr2 functions
(exprl(?=expr2)) 2-79 regexp 2-111
match exprl, if not followed by expr2 regexpi 2-111
(exprl(?!lexpr2)) 2-80 regexprep 2-111
match expr2, if not preceded by exprl regexptranslate 2-111
(exprl(?<lexpr2)) 2-82 introduction 2-57

Index-11

Index

logical operators 2-74
lookaround operators 2-77
used in logical statements 2-83
multiple strings
finding a single pattern 2-107
finding multiple patterns 2-109
matching 2-107
replacing 2-109
quantifiers 2-84
lazy 2-87
tokens 2-87
example 1 2-89
example 2 2-90
introduction 2-88
named capture 2-92
operators 2-88
use in replacement string 2-92
relational operators 2-23
empty arrays 2-24
strings 1-58
replacing substring within string 1-59

S

save 9-12
scalar
and relational operators 1-58
expansion 2-23
string 1-58
scheduling program execution
using timers 7-2
scripts 3-9
example 3-21
executing 3-22
search path
files on 4-34
shell escape functions 2-7
short-circuiting
in conditional expressions 2-27
operators 2-30

Index-12

single-precision matrix 1-3 1-6
smallest value system can represent 2-20
source code
protecting 3-6
(space) character
for separating array row elements 2-130
for separating function return values 2-130
sparse matrices
memory requirements 9-7
sprintf
formatting strings 1-42
square brackets
for output arguments 3-12
starting
timers 7-10
statements
conditional 3-51
stopping
timers 7-10
strcmp 1-56
string to numeric conversion
functions 1-62
strings 1-35
comparing 1-56
converting to numeric 1-62
functions to create 1-64
searching and replacing 1-59
strings, cell arrays of 1-40
strings, formatting 1-42
escape characters 1-44
field width 1-50
flags 1-50
format operator 1-46
precision 1-49
setting field width 1-52 1-54
setting precision 1-52 1-54
subtype 1-49
using identifiers 1-54
value identifiers 1-52
struct arrays

Index

functions 1-98
structure arrays

data organization 1-91

dynamic field names 1-77

element-by-element organization 1-94

organizing data 1-91

example 1-95

plane organization 1-93
structures

field names

dynamic 1-77

subfunctions 4-33

accessing 4-34

creating 4-33

debugging 4-34

definition line 4-33

precedence of 3-38
subscripting

with logical expression 2-28

with the find function 2-28
substring within a string 1-59
subtraction operator 2-22
superseding existing filenames 4-34
switch

case groupings 2-43

example 2-44

multiple conditions 2-44
symbols 2-119

asterisk * 2-120

at sign @ 2-120

colon : 2-121

comma , 2-122

curly braces { } 2-123

dot . 2-123

dot-dot .. 2-124

dot-dot-dot ... 2-124

dot-parentheses . () 2-126

exclamation point ! 2-126

parentheses () 2-126

percent % 2-127

percent-brace %{ and %} 2-128
plus sign + 2-128

semicolon ; 2-128

single quotes ' 2-129

space character 2-130

square brackets [] 2-131

T

tabs in string arrays 1-58

tic and toc
versus cputime 8-3

time
numbers 2-51

time and date functions 2-55

timer objects
blocking the command line 7-12
callback functions 7-14
creating 7-5
deleting 7-5
execution modes 7-19
finding all existing timers 7-24
naming convention 7-6
overview 7-2
properties 7-7
starting 7-10
stopping 7-10

timers
starting and stopping 7-10
using 7-2

times and dates 2-50

tips, programming
additional information 10-55
command and function syntax 10-3
debugging 10-21
demos 10-54
development environment 10-10
evaluating expressions 10-32
files and filenames 10-45
function arguments 10-15

Index-13

Index

functions 10-12 recommendations 2-17
help 10-6 suggestions for use 2-10
input/output 10-48 in evaluation statements 2-15
MATLAB path 10-34 lifetime of 2-18
operating system compatibility 10-52 loaded from a MAT-file 2-14
program control 10-38 local 2-8
program development 10-18 naming 2-12
save and load 10-42 conflict with function names 2-13
starting MATLAB 10-51 persistent 2-11
strings 10-29 initializing 2-12
variables 10-25 scope 2-16
token in string 1-60 in nested functions 2-18
tokens storage in memory 9-2
regular expressions 2-87 usage guidelines 2-16
tolerance 2-20 vector
transpose operator 2-22 of dates 2-53
type identification functions 1-28 preallocation 8-4
vectorization 8-8
U example 8-8

replacing for
vectorization 2-45
verbose mode
warning control 6-32
\"4 version 2-20
obtaining 2-20

unary minus operator 2-22
unary plus operator 2-22

value
largest system can represent 2-20
varargin 3-50)
in argument list 3-51
in nested functions 3-53
unpacking contents 3-50
varargout 3-50
in argument list 3-51
in nested functions 3-53
packing contents 3-50

warning
formatting strings 1-42
warning control 6-24
backtrace, verbose modes 6-32
saving and restoring state 6-31
warning control statements
message identifiers 6-26

variables output from 6-28
global 2-9 output structure array 6-29
alternatives 2-11 warnings
creating 2-10 debugging 6-35
displaying 2-10 identifying 6-23

Index-14

Index

syntax 6-25
warning control statements 6-26
warning states 6-26
which 3-39
while
empty arrays 2-47
example 2-47
syntax 2-46

white space

finding in string 1-58
whos

interpreting memory use 9-12
wildcards, in filenames 2-120
workspace

context 3-22

of individual functions 3-22

Index-15

	toc
	Classes (Data Types)
	Overview of MATLAB Classes
	Fundamental MATLAB Classes
	How to Use the Different Classes

	Numeric Classes
	Overview
	Integers
	Creating Integer Data
	Arithmetic Operations on Integer Classes
	Largest and Smallest Values for Integer Classes
	Integer Functions

	Floating-Point Numbers
	Double-Precision Floating Point
	Single-Precision Floating Point
	Creating Floating-Point Data
	Arithmetic Operations on Floating-Point Numbers
	Largest and Smallest Values for Floating-Point Classes
	Accuracy of Floating-Point Data
	Avoiding Common Problems with Floating-Point Arithmetic
	Floating-Point Functions
	References

	Complex Numbers
	Creating Complex Numbers
	Complex Number Functions

	Infinity and NaN
	Infinity
	NaN
	Infinity and NaN Functions

	Identifying Numeric Classes
	Display Format for Numeric Values
	Display Format Examples
	Setting Numeric Format in a Program

	Function Summary

	The Logical Class
	Overview of the Logical Class
	Identifying Logical Arrays
	Examples of Identifying Logical Arrays

	Functions that Return a Logical Result
	Examples of Functions that Return a Logical Result

	Using Logical Arrays in Conditional Statements
	Using Logical Arrays in Indexing

	Characters and Strings
	Creating Character Arrays
	Creating a Single Character
	Creating a Character String
	Creating a Rectangular Character Array
	Identifying Characters in a String
	Working with Space Characters
	Expanding Character Arrays

	Cell Arrays of Strings
	Converting to a Cell Array of Strings
	Functions for Cell Arrays of Strings

	Formatting Strings
	The Format String
	Input Value Arguments
	The Formatting Operator
	Constructing the Formatting Operator
	Setting Field Width and Precision
	Restrictions for Using Identifiers

	String Comparisons
	Comparing Strings for Equality
	Comparing for Equality Using Operators
	Categorizing Characters Within a String

	Searching and Replacing
	Converting from Numeric to String
	Converting to a Character Equivalent
	Converting to a String of Numbers
	Converting to a Specific Radix

	Converting from String to Numeric
	Converting from a Character Equivalent
	Converting from a Numeric String
	Converting from a Specific Radix

	Function Summary

	Structures
	What Is a Structure?
	Reasons to Use a Structure
	Comparing Struct Arrays with Cell Arrays

	Creating a Structure
	Creating Structures and Structure Fields
	Handling Unassigned Fields
	Preallocating Memory for the Array

	Structure Fields
	Guidelines for Naming Structure Fields
	Listing the Fields of a Structure
	Arranging Fieldnames Alphabetically
	Creating Field Names Dynamically
	Functions That Operate on Fields

	Concatenating Structures
	Concatenating Structure Arrays
	Concatenating Structure Fields

	Indexing into a Struct Array
	Basic Struct and Field Indexing
	Indexing to Inner Levels of the Struct Array
	Indexing Tips

	Returning Data from a Struct Array
	Assigning Struct Array Values to a Comma-Separated List
	Assigning Struct Values to Separate Variables
	Assigning Struct Array Values to a Cell Array

	Using Structures with Functions
	Applying a Function to the Fields of a Structure
	Passing Arguments in a Structure
	Passing Selected Fields in a Structure

	Converting Between Struct Array and Cell Array
	Conversion Example

	Organizing Data in Structure Arrays
	Plane Organization
	Element-by-Element Organization
	Example — A Simple Database

	Operator Summary
	Operators That Construct the Struct Array
	Operators That Concatenate Structures
	Operators Used for Struct Array Indexing

	Function Summary
	Functions Related to Constructing the Struct Array
	Functions Related to the Type of the Struct Array
	Functions Related to Struct Fields
	Functions Related to Applying Functions to a Struct Array

	Cell Arrays
	What Is a Cell Array?
	Cell Array Operations
	Creating a Cell Array
	Nesting One Cell Array in Another
	Creating Cell Arrays One Cell At a Time
	Alternative Assignment Syntax
	Preallocating Memory for the Array

	Concatenating Cell Arrays
	Indexing into a Cell Array
	Indexing Into Inner Levels of the Cell Array
	Indexing Tips
	Using Map Objects in Cell Array Indexing

	Assigning Values to a Cell Array
	Returning Data from a Cell Array
	Obtaining Values from the Array
	Assigning Cell Values to a Comma-Separated List
	Assigning Cell Values to Separate Variables
	Plotting the Cell Array

	Using Cell Arrays with Functions
	Applying a Function to the Cells of a Cell Array
	Passing Variable Numbers of Arguments
	Passing Arguments in a Cell Array
	Passing Selected Cells of a Cell Array

	Converting Between Cell Array and Struct Array
	Conversion Example

	Operator Summary
	Operators That Construct the Cell Array
	Operators That Concatenate Cells and Cell Content
	Operators Used for Cell Array Indexing

	Function Summary
	Functions Related to Constructing the Array
	Functions Related to the Type of the Array
	Functions Related to Obtaining Cell Array Contents
	Functions Related to Applying Functions to a Cell Array
	Functions Used with Cell Array Conversion

	Function Handles
	Overview
	Creating a Function Handle
	Maximum Length of a Function Name
	The Role of Scope, Precedence, and Overloading When Creating a F
	Obtaining Permissions from Class Methods
	Using Function Handles for Anonymous Functions
	Arrays of Function Handles

	Calling a Function By Means of Its Handle
	Calling Syntax
	Example — Calling a Function with Multiple Outputs
	Returning a Handle for Use Outside of a Function File

	Preserving Data from the Workspace
	Preserving Data with Anonymous Functions
	Preserving Data with Nested Functions

	Applications of Function Handles
	Example of Passing a Function Handle
	Pass a Function to Another Function
	Capture Data Values For Later Use By a Function
	Call Functions Outside of Their Normal Scope
	Save the Handle in a MAT-File for Use in a Later MATLAB Session

	Saving and Loading Function Handles
	Invalid or Obsolete Function Handles

	Advanced Operations on Function Handles
	Examining a Function Handle
	Converting to and from a String
	Comparing Function Handles

	Functions That Operate on Function Handles

	Map Containers
	Overview of the Map Data Structure
	Description of the Map Class
	Properties of the Map Class
	Methods of the Map Class

	Creating a Map Object
	Constructing an Empty Map Object
	Constructing An Initialized Map Object
	Combining Map Objects

	Examining the Contents of the Map
	Reading and Writing Using a Key Index
	Reading From the Map
	Adding Key/Value Pairs
	Building a Map with Concatenation

	Modifying Keys and Values in the Map
	Removing Keys and Values from the Map
	Modifying Values
	Modifying Keys
	Modifying a Copy of the Map

	Mapping to Different Value Types
	Mapping to a Structure Array
	Mapping to a Cell Array

	Combining Unlike Classes
	Combining Unlike Integer Types
	Example of Combining Unlike Integer Sizes
	Example of Combining Signed with Unsigned

	Combining Integer and Noninteger Data
	Empty Matrices
	Concatenation Examples
	Combining Single and Double Types
	Combining Integer and Double Types
	Combining Character and Double Types
	Combining Logical and Double Types

	Defining Your Own Classes

	Basic Program Components
	MATLAB Commands
	Basic Command Syntax
	Entering More Than One Command on a Line
	Assigning to Multiple Outputs
	Assigning Fewer Than the Full Number of Outputs

	Commands that Call MATLAB Functions

	Expressions
	String Evaluation
	eval

	Shell Escape Functions

	Variables
	Types of Variables
	Local Variables
	Global Variables
	Persistent Variables

	Naming Variables
	Verifying a Variable Name
	Avoid Using Function Names for Variables
	Potential Conflict with Function Names

	Guidelines to Using Variables
	Scope of a Variable
	Extending Variable Scope
	Scope in Nested Functions

	Lifetime of a Variable

	Keywords
	Special Values
	Operators
	Arithmetic Operators
	Arithmetic Operators and Arrays

	Relational Operators
	Relational Operators and Arrays
	Relational Operators and Empty Arrays

	Logical Operators
	Element-Wise Operators and Functions
	Bit-Wise Functions
	Short-Circuit Operators

	Operator Precedence
	Precedence of AND and OR Operators
	Overriding Default Precedence

	Comma-Separated Lists
	What Is a Comma-Separated List?
	Generating a Comma-Separated List
	Generating a List from a Cell Array
	Generating a List from a Structure

	Assigning Output from a Comma-Separated List
	Assigning to a Comma-Separated List
	How to Use the Comma-Separated Lists
	Constructing Arrays
	Displaying Arrays
	Concatenation
	Function Call Arguments
	Function Return Values

	Fast Fourier Transform Example

	Program Control Statements
	Conditional Control — if, switch
	if, else, and elseif
	switch, case, and otherwise

	Loop Control — for, while, continue, break
	for
	while
	continue
	break

	Error Control — try, catch
	try and catch

	Program Termination — return
	return

	Dates and Times
	Overview
	Types of Date Formats
	Date Strings
	Serial Date Numbers
	Date Vectors

	Conversions Between Date Formats
	Date String Formats
	Output Formats
	Converting Output Format with datestr

	Current Date and Time
	Function Summary

	Regular Expressions
	Overview
	Calling Regular Expression Functions from MATLAB
	MATLAB Regular Expression Functions
	Returning the Desired Information
	Modifying Parameters of the Search

	Parsing Strings with Regular Expressions
	Step 1 — Identify Unique Patterns in the String
	Step 2 — Express Each Pattern as a Regular Expression
	Step 3 — Call the Appropriate Search Function

	Other Benefits of Using Regular Expressions
	Parsing or Replacing with Multiple Expressions and Strings
	Replacing Parts of a String
	Matching with Tokens Taken from the String
	Matching and Replacing Strings Dynamically

	Metacharacters and Operators
	Character Type Operators
	Any Character — .
	Selected Characters — [c1c2c3]
	Range of Characters — [c1 - c2]
	Word and White-Space Characters — \w, \s
	Numeric Digits — \d

	Character Representation
	Octal and Hexadecimal — \o, \x

	Grouping Operators
	Grouping and Capture — (expr)
	Grouping Only — (?:expr)
	Alternative Match — expr1|expr2

	Nonmatching Operators
	Including Comments — (?#expr)

	Positional Operators
	Start and End of String Match — ^expr, expr$
	Start and End of Word Match — \<expr, expr\>
	Exact Word Match — \<expr\>

	Lookaround Operators
	Using the Lookahead Operator — expr(?=test)
	Using the Negative Lookahead Operator — expr(?!test)
	Using the Lookbehind Operator — (?<=test)expr
	Using the Negative Lookbehind Operator— (?<!test)expr
	Using Lookaround as a Logical Operator

	Quantifiers
	Zero or One — expr?
	Zero or More — expr*
	One or More — expr+
	Exact, Minimum, and Maximum Quantities — {min,max}
	Lazy Quantifiers — expr*?

	Tokens
	Operators Used with Tokens
	Introduction to Using Tokens
	Using Tokens — Example 1
	Using Tokens — Example 2
	Tokens That Are Not Matched
	Using Tokens in a Replacement String

	Named Capture
	Labeling Your Output

	Conditional Expressions
	Conditions Based on Tokens
	Conditions Based on a Lookaround Match
	Conditions Based on Return Values

	Dynamic Regular Expressions
	Example of a Dynamic Expression
	Dynamic Operators for the Match Expression
	Dynamic Operators for the Replacement Expression

	String Replacement
	Handling Multiple Strings
	Finding a Single Pattern in Multiple Strings
	Finding Multiple Patterns in Multiple Strings
	Replacing Multiple Strings

	Function, Mode Options, Operator, Return Value Summaries
	Function Summary
	Mode Options Summary
	Operator Summary
	Return Value Summary

	Symbol Reference
	Asterisk — *
	Filename Wildcard

	At — @
	Function Handle Constructor
	Class Folder Designator

	Colon — :
	Numeric Sequence Range
	Numeric Sequence Step
	Indexing Range Specifier
	Conversion to Column Vector
	Preserving Array Shape on Assignment

	Comma — ,
	Row Element Separator
	Array Index Separator
	Function Input and Output Separator
	Command or Statement Separator

	Curly Braces — { }
	Cell Array Constructor
	Cell Array Indexing

	Dot — .
	Decimal Point
	Structure Field Definition
	Object Method Specifier

	Dot-Dot — ..
	Parent Folder

	Dot-Dot-Dot (Ellipsis) — ...
	Line Continuation

	Dot-Parentheses — .()
	Dynamic Structure Fields

	Exclamation Point — !
	Shell Escape

	Parentheses — ()
	Array Indexing
	Function Input Arguments

	Percent — %
	Single Line Comments
	Conversion Specifiers

	Percent-Brace — %{ %}
	Block Comments

	Plus — +
	Semicolon — ;
	Array Row Separator
	Output Suppression
	Command or Statement Separator

	Single Quotes — ’ ’
	Character and String Constructor

	Space Character
	Row Element Separator
	Function Output Separator

	Slash and Backslash — / \
	Square Brackets — []
	Array Constructor
	Concatenation
	Function Declarations and Calls

	Tilde — ~
	Argument Placeholder

	Functions and Scripts
	Program Development
	Overview
	Creating a Program
	Saving the Program
	Running the Program

	Getting the Bugs Out
	The Debugging Process

	Cleaning Up the Program
	Improving Performance
	Summary Report
	Detail Report
	File Listing

	Checking It In
	Protecting Your Source Code
	Building a Content Obscured Format with P-Code
	Building a Standalone Executable

	Working with Functions in Files
	Overview
	Types of Program Files
	Basic Parts of a Program File
	Function Definition Line
	The H1 Line
	Help Text
	The Function or Script Body
	Comments

	Creating a Program File
	Using Text Editors
	A Word of Caution on Saving Program Files

	Providing Help for Your Program
	Cleaning Up the File When Done
	Example 1
	Example 2

	Scripts and Functions
	Scripts
	The Base Workspace
	Simple Script Example

	Functions
	The Function Workspace
	Simple Function Example

	Types of Functions
	Organizing Your Functions
	Identifying Dependencies
	Simple Display of Program File Dependencies
	Detailed Display of Program File Dependencies

	Calling Functions
	Command vs. Function Syntax
	Overview
	MATLAB Command Syntax
	MATLAB Function Syntax
	Common Mistakes In Syntax
	Recognizing Function Calls That Use Command Syntax

	What Happens When You Call a Function
	Clearing Functions from Memory

	Determining Which Function Gets Called
	Function Scope
	Function Precedence Order
	Multiple Implementation Types
	Querying Which Function Gets Called

	Calling External Functions
	Running External Programs

	Function Arguments
	Overview
	Input Arguments
	Passing String Arguments
	Passing File Name Arguments
	Passing Function Handle Arguments

	Output Arguments
	Assigning Output Arguments
	Assigning Optional Return Values
	Returning Modified Input Arguments

	Passing Arguments in Structures or Cell Arrays
	Passing Arguments in a Structure
	Passing Arguments in a Cell Array

	Passing Optional Arguments
	Passing Variable Numbers of Arguments
	Checking the Number of Input Arguments
	Passing Optional Arguments to Nested Functions
	Ignoring Selected Outputs or Input Arguments

	Validating Inputs with Input Parser
	What Is the Input Parser?
	Advantages of Using the Input Parser

	Working with the Example Function
	Beginning the Example Function

	The inputParser Class
	Validating Data Passed to a Function
	Step 1 — Collect Information on the Inputs to Your Function
	Step 2 — Register Expected Input Values with the Input Parser
	Step 3 — Parse and Validate the Input Arguments

	Substituting Default Values for Arguments Not Passed
	Handling Unmatched Inputs
	Interpreting Arguments Passed as Structures
	Passing Arguments Packaged In a Structure
	Overriding Arguments Passed In a Structure
	Passing Data Packaged In a Structure

	Other Features of the Input Parser
	Enabling Case-Sensitive Matching
	Adding the Function Name to Error Messages
	Making a Copy of the Input Scheme

	Summary of inputParser Methods and Properties
	Methods and Properties Used in Preparing the Input Scheme
	Methods and Properties Used in Parsing Inputs to Your Function
	Properties Used in Evaluating the Results

	Functions Provided By MATLAB
	Overview
	Functions
	Identifying Functions
	Viewing the Source Code

	Built-In Functions
	Identifying Built-In Functions
	Forcing a Built-In Call

	Overloaded MATLAB Functions
	Internal Utility Functions

	Types of Functions
	Overview of MATLAB Function Types
	Anonymous Functions
	Constructing an Anonymous Function
	Simple Example
	A Two-Input Example
	Evaluating With No Input Arguments

	Arrays of Anonymous Functions
	Space Characters in Anonymous Function Elements

	Outputs from Anonymous Functions
	Example

	Variables Used in the Expression
	Changing Variables Used in an Anonymous Function

	Examples of Anonymous Functions
	Example 1 — Passing a Function to quad
	Example 2 — Multiple Anonymous Functions

	Primary Functions
	Nested Functions
	Writing Nested Functions
	Example — More Than One Nested Function
	Example — Multiply Nested Functions

	Calling Nested Functions
	Variable Scope in Nested Functions
	The Scope of Output Variables

	Using Function Handles with Nested Functions
	Function Handles and Nested Function Variables
	Example Using Externally Scoped Variables
	Separate Instances of Externally Scoped Variables

	Restrictions on Assigning to Variables
	Examples of Nested Functions
	Example 1 — Creating a Function Handle for a Nested Function
	Example 2 — Function-Generating Functions

	Subfunctions
	Overview
	Calling Subfunctions
	Accessing Help for a Subfunction

	Private Functions
	Overview
	Private Folders
	Accessing Help for a Private Function

	Overloaded Functions

	Using Objects
	MATLAB Objects
	Getting Oriented
	Getting Comfortable with Objects
	What Are Objects and Why Use Them?
	Accessing Objects
	Objects In the MATLAB Language
	Other Kinds of Objects Used by MATLAB

	General Purpose Vs. Specialized Arrays
	How They Differ
	Using General-Purpose Data Structures
	Using Specialized Objects

	Key Object Concepts
	Basic Concepts
	Classes Describe How to Create Objects
	Properties Contain Data
	Methods Implement Operations

	Creating Objects
	Class Constructor
	When to Use Package Names

	Accessing Object Data
	Listing Public Properties
	Getting Property Values
	Setting Property Values

	Calling Object Methods
	What Operations Can You Perform
	Method Syntax
	Calling the Correct Method

	Class of Objects Returned by Methods

	Desktop Tools Are Object Aware
	Tab Completion Works with Objects
	Editing Objects with the Variable Editor

	Getting Information About Objects
	The Class of Workspace Variables
	Extracting Data From Object Properties
	Testing for the Class of an Object

	Information About Class Members
	Logical Tests for Objects
	Testing for Object Equality
	Identifying MATLAB Objects

	Displaying Objects
	Getting Help for MATLAB Objects

	Copying Objects
	Two Copy Behaviors
	More Information About Handle and Value Classes

	Value Object Copy Behavior
	Value Object Properties

	Handle Object Copy Behavior
	Reassigning Handle Variables
	Clearing Handle Variables
	Deleting Handle Objects

	Testing for Handle or Value Class

	Destroying Objects
	Object Lifecycle
	Difference Between clear and delete

	Error Handling
	Error Reporting in a MATLAB Application
	Overview
	Getting an Exception at the Command Line
	Determine the Fault from the Error Message
	Review the Failing Code
	Step Through the Code in the Debugger

	Getting an Exception in Your Program Code
	Generating a New Exception

	Capturing Information About the Error
	Overview
	The MException Class
	Object Constructor

	Properties of the MException Class
	Message Identifiers
	Text of the Error Message
	The Call Stack
	The Cause Array

	Methods of the MException Class

	Throwing an Exception
	Responding to an Exception
	Overview
	The try-catch Statement
	The Try Block
	The Catch Block

	Suggestions on How to Handle an Exception

	Warnings
	Reporting a Warning
	Formatted Message Strings
	Message Identifiers

	Identifying the Cause

	Warning Control
	Overview
	Warning Statements
	Attaching an Identifier to the Warning Statement

	Warning Control Statements
	Warning States
	Message Identifiers

	Output from Control Statements
	Output Structure Array

	Saving and Restoring State
	Example 1 — Performing an Explicit Query
	Example 2 — Performing an Implicit Query

	Backtrace and Verbose Modes
	Example 1 — Enabling Verbose Warnings
	Example 2 — Displaying a Stack Trace on a Specific Warning

	Debugging Errors and Warnings

	Program Scheduling
	Using a MATLAB Timer Object
	Overview
	Example: Displaying a Message

	Creating Timer Objects
	Creating the Object
	Naming the Object

	Working with Timer Object Properties
	Retrieving the Value of Timer Object Properties
	Setting the Value of Timer Object Properties
	Viewing a List of All Settable Properties

	Starting and Stopping Timers
	Starting a Timer
	Starting a Timer at a Specified Time
	Stopping Timer Objects
	Blocking the MATLAB Command Line

	Creating and Executing Callback Functions
	Associating Commands with Timer Object Events
	Creating Callback Functions
	Specifying Callback Functions Directly
	Putting Commands in a Callback Function
	Example: Writing a Callback Function

	Specifying the Value of Callback Function Properties

	Timer Object Execution Modes
	Executing a Timer Callback Function Once
	Executing a Timer Callback Function Multiple Times
	Handling Callback Function Queuing Conflicts

	Deleting Timer Objects from Memory
	Deleting One or More Timer Objects
	Testing the Validity of a Timer Object

	Finding Timer Objects in Memory
	Finding All Timer Objects
	Finding Invisible Timer Objects

	Performance
	Analyzing Your Program’s Performance
	Overview
	The Profiler Utility
	Stopwatch Timer Functions
	Measuring Smaller Programs
	Using tic and toc Versus the cputime Function

	Techniques for Improving Performance
	Preallocating Arrays
	Preallocation Functions
	Preallocating a Nondouble Matrix

	Use Distributed Arrays for Large Datasets
	When Possible, Replace for with parfor (Parallel for)
	Limiting Size and Complexity
	Assigning to Variables
	Changing a Variable’s Data Type or Dimension
	Assigning Real and Complex Numbers

	Using Appropriate Logical Operators
	Overloading Built-In Functions
	Functions Are Generally Faster Than Scripts
	Load and Save Are Faster Than File I/O Functions
	Vectorizing Loops
	Simple Example of Vectorizing
	Advanced Example of Vectorizing
	Functions Used in Vectorizing

	Avoid Large Background Processes

	Memory Usage
	Memory Allocation
	Memory Allocation for Arrays
	Creating and Modifying Arrays
	Copying Arrays
	Array Headers
	Function Arguments

	Data Structures and Memory
	Numeric Arrays
	Complex Arrays
	Sparse Matrices
	Cell Arrays
	Structures

	Memory Management Functions
	The whos Function

	Strategies for Efficient Use of Memory
	Ways to Reduce the Amount of Memory Required
	Load Only As Much Data As You Need
	Process Data By Blocks
	Avoid Creating Temporary Arrays
	Use Nested Functions to Pass Fewer Arguments

	Using Appropriate Data Storage
	Use the Appropriate Numeric Class
	Reduce the Amount of Overhead When Storing Data
	Import Data to the Appropriate MATLAB Class
	Make Arrays Sparse When Possible

	How to Avoid Fragmenting Memory
	Preallocate Contiguous Memory When Creating Arrays
	Allocate Your Larger Arrays First
	Long-Term Usage (Windows Systems Only)

	Reclaiming Used Memory
	Save Your Large Data Periodically to Disk
	Clear Old Variables from Memory When No Longer Needed

	Resolving “Out of Memory” Errors
	General Suggestions for Reclaiming Memory
	Setting the Process Limit
	Disabling Java VM on Startup
	Increasing System Swap Space
	UNIX Systems
	Linux Systems
	Windows XP Systems

	Using the 3GB Switch on Windows Systems
	Freeing Up System Resources on Windows Systems

	Programming Tips
	Introduction
	Command and Function Syntax
	Syntax Help
	Command and Function Syntaxes
	Command Line Continuation
	Completing Commands Using the Tab Key
	Recalling Commands
	Clearing Commands
	Suppressing Output to the Screen

	Help
	Using the Help Browser
	Help on Functions from the Help Browser
	Help on Functions from the Command Window
	Topical Help
	Paged Output
	Writing Your Own Help
	Help for Subfunctions and Private Functions
	Help for Methods and Overloaded Functions

	Development Environment
	Workspace Browser
	Using the Find and Replace Utility
	Commenting Out a Block of Code
	Creating Functions from Command History
	Editing Functions in EMACS

	Functions
	Function Structure
	Using Lowercase for Function Names
	Getting a Function’s Name and Path
	What Files Does a Function Use?
	Dependent Functions, Built-Ins, Classes

	Function Arguments
	Getting the Input and Output Arguments
	Variable Numbers of Arguments
	String or Numeric Arguments
	Passing Arguments in a Structure
	Passing Arguments in a Cell Array

	Program Development
	Planning the Program
	Using Pseudo-Code
	Selecting the Right Data Structures
	General Coding Practices
	Naming a Function Uniquely
	The Importance of Comments
	Coding in Steps
	Making Modifications in Steps
	Functions with One Calling Function
	Testing the Final Program

	Debugging
	The MATLAB Debug Functions
	More Debug Functions
	The MATLAB Graphical Debugger
	A Quick Way to Examine Variables
	Setting Breakpoints from the Command Line
	Finding Line Numbers to Set Breakpoints
	Stopping Execution on an Error or Warning
	Locating an Error from the Error Message
	Using Warnings to Help Debug
	Making Code Execution Visible
	Debugging Scripts

	Variables
	Rules for Variable Names
	Making Sure Variable Names Are Valid
	Do Not Use Function Names for Variables
	Checking for Reserved Keywords
	Avoid Using i and j for Variables
	Avoid Overwriting Variables in Scripts
	Persistent Variables
	Protecting Persistent Variables
	Global Variables

	Strings
	Creating Strings with Concatenation
	Comparing Methods of Concatenation
	Store Arrays of Strings in a Cell Array
	Converting Between Strings and Cell Arrays
	Search and Replace Using Regular Expressions

	Evaluating Expressions
	Find Alternatives to Using eval
	Assigning to a Series of Variables
	Short-Circuit Logical Operators
	Changing the Counter Variable within a for Loop

	MATLAB Path
	Precedence Rules
	File Precedence
	Adding a Folder to the Search Path
	Handles to Functions Not on the Path
	Making Toolbox File Changes Visible to MATLAB
	Making Nontoolbox File Changes Visible to MATLAB
	Change Notification on Windows

	Program Control
	Using break, continue, and return
	Using switch Versus if
	MATLAB case Evaluates Strings
	Multiple Conditions in a case Statement
	Implicit Break in switch-case
	Variable Scope in a switch
	Catching Errors with try-catch
	Nested try-catch Blocks
	Forcing an Early Return from a Function

	Save and Load
	Saving Data from the Workspace
	Loading Data into the Workspace
	Viewing Variables in a MAT-File
	Appending to a MAT-File
	Save and Load on Startup or Quit
	Saving to an ASCII File

	Files and Filenames
	Naming Functions
	Naming Other Files
	Passing Filenames as Arguments
	Passing Filenames to ASCII Files
	Determining Filenames at Run-Time
	Returning the Size of a File

	Input/Output
	File I/O Function Overview
	Common I/O Functions
	Readable File Formats
	Using the Import Wizard
	Loading Mixed Format Data
	Reading Files with Different Formats
	Interactive Input into Your Program

	Starting MATLAB
	Getting MATLAB to Start Up Faster

	Operating System Compatibility
	Executing O/S Commands from MATLAB
	Searching Text with grep
	Constructing Paths and Filenames
	Finding the MATLAB Root Folder
	Temporary Directories and Filenames

	Demos
	Demos Available with MATLAB

	For More Information
	Current CSSM
	Archived CSSM
	MATLAB Technical Support
	Tech Notes
	MATLAB Central
	MATLAB Newsletters (Digest, News & Notes)
	MATLAB Documentation
	MATLAB Index of Examples

	Index

	tables
	Integer Functions
	Floating-Point Functions
	Complex Number Functions
	Infinity and NaN Functions
	Class Identification Functions
	Output Formatting Functions
	Functions to Create Character Arrays
	Functions to Modify Character Arrays
	Functions to Read and Operate on Character Arrays
	Functions to Search or Compare Character Arrays
	Functions to Determine Class or Content
	Functions to Convert Between Numeric and String Classes
	Functions to Work with Cell Arrays of Strings as Sets
	Current Date and Time Functions
	Conversion Functions
	Utility Functions
	Timing Measurement Functions
	MATLAB Regular Expression Functions
	Character Types
	Character Representation
	Grouping Operators
	Nonmatching Operators
	Positional Operators
	Lookaround Operators
	Quantifiers
	Ordinal Token Operators
	Named Token Operators
	Conditional Expression Operators
	Dynamic Expression Operators
	Replacement String Operators
	Example Function, Part 1 — Create the Test File
	Example Function, Part 2 — Create the Input Scheme Object
	Example Function, Part 3 — Define Required Arguments
	Example Function, Part 4 — Define Optional Arguments
	Example Function, Part 5 — Define Parameter/Value Arguments
	Example Function, Part 6 — Display Argument Names
	Example Function, Part 7 — Display Selected Input Values
	Example Function, Part 8 — Display All Input Values
	Example Function, Part 9 — Show Defaulted Inputs
	Example Function, Part 10 — Show Unmatched Inputs
	Example Function, Part 11 — Expanding a Structure Input
	Example Function, Part 12 — Receiving a Scalar Struct Input
	Example Function, Part 13 — Making Validation Case Sensitive
	Example Function, Part 14 — Case Sensitive Matching with No Erro
	Example Function, Part 15 — Identifying the Function on an Error

